1,000 research outputs found

    Physiology and phylogeny of green sulfur bacteria forming a monospecific phototrophic assemblage at a depth of 100 meters in the Black Sea

    Get PDF
    The biomass, phylogenetic composition, and photoautotrophic metabolism of green sulfur bacteria in the Black Sea was assessed in situ and in laboratory enrichments. In the center of the western basin, bacteriochlorophyll e (BChl e) was detected between depths of 90 and 120 m and reached maxima of 54 and 68 ng liter−1. High-pressure liquid chromatography analysis revealed a dominance of farnesyl esters and the presence of four unusual geranyl ester homologs of BChl e. Only traces of BChl e (8 ng liter−1) were found at the northwestern slope of the Black Sea basin, where the chemocline was positioned at a significantly greater depth of 140 m. Stable carbon isotope fractionation values of farnesol indicated an autotrophic growth mode of the green sulfur bacteria. For the first time, light intensities in the Black Sea chemocline were determined employing an integrating quantum meter, which yielded maximum values between 0.0022 and 0.00075 μmol quanta m−2 s−1 at the top of the green sulfur bacterial layer around solar noon in December. These values represent by far the lowest values reported for any habitat of photosynthetic organisms. Only one 16S rRNA gene sequence type was detected in the chemocline using PCR primers specific for green sulfur bacteria. This previously unknown phylotype groups with the marine cluster of the Chlorobiaceae and was successfully enriched in a mineral medium containing sulfide, dithionite, and freshly prepared yeast extract. Under precisely controlled laboratory conditions, the enriched green sulfur bacterium proved to be capable of exploiting light intensities as low as 0.015 μmol quanta m−2 s−1 for photosynthetic 14CO2 fixation. Calculated in situ doubling times of the green sulfur bacterium range between 3.1 and 26 years depending on the season, and anoxygenic photosynthesis contributes only 0.002 to 0.01% to total sulfide oxidation in the chemocline. The stable population of green sulfur bacteria in the Black Sea chemocline thus represents the most extremely low-light-adapted and slowest-growing type of phototroph known to date

    Temperature response of denitrification and anammox reveals the adaptation of microbial communities to in situ temperatures in permeable marine sediments that span 50° in latitude

    Get PDF
    Despite decades of research on the physiology and biochemistry of nitrate/nitrite-respiring microorganisms, little is known regarding their metabolic response to temperature, especially under in situ conditions. The temperature regulation of microbial communities that mediate anammox and denitrification was investigated in near shore permeable sediments at polar, temperate, and subtropical sites with annual mean temperatures ranging from -5 to 23 degrees C. Total N-2 production rates were determined using the isotope pairing technique in intact core incubations under diffusive and simulated advection conditions and ranged from 2 to 359 mu mol N m(-2) d(-1). For the majority of sites studied, N-2 removal was 2-7 times more rapid under simulated advective flow conditions. Anammox comprised 6-14% of total N-2 production at temperate and polar sites and was not detected at the subtropical site. Potential rates of denitrification and anammox were determined in anaerobic slurries in a temperature gradient block incubator across a temperature range of -1 degrees C to 42 degrees C. The highest optimum temperature (T-opt) for denitrification was 36 degrees C and was observed in subtropical sediments, while the lowest T-opt of 21 degrees C was observed at the polar site. Seasonal variation in the T-opt was observed at the temperate site with values of 26 and 34 degrees C in winter and summer, respectively. The T-opt values for anammox were 9 and 26 degrees C at the polar and temperate sites, respectively. The results demonstrate adaptation of denitrifying communities to in situ temperatures in permeable marine sediments across a wide range of temperatures, whereas marine anammox bacteria may be predominately psychrophilic to psychrotolerant. The adaptation of microbial communities to in situ temperatures suggests that the relationship between temperature and rates of N removal is highly dependent on community structure

    Direct cell mass measurements expand the role of small microorganisms in nature.

    No full text
    Microbial biomass is a key parameter needed for the quantification of microbial turnover rates and their contribution to the biogeochemical element cycles. However, estimates of microbial biomass rely on empirically-derived mass-to-volume relationships and large discrepancies exist between the available empirical conversion factors. Here we report a significant non-linear relationship between carbon mass and cell volume (mcarbon = 197 × V0.46.; R2 = 0.95) based on direct cell mass, volume and elemental composition measurements of twelve prokaryotic species with average volumes between 0.011 – 0.705 μm3. The carbon mass density of our measured cells ranged from 250 to 1800 fg C μm-3 for the measured cell volumes. Compared to other currently used models, our relationship yielded up to 300 % higher carbon mass values. A compilation of our and previously published data showed that cells with larger volumes (> 0.5 μm3) display a constant (carbon) mass-to-volume ratio whereas cells with volumes below 0.5 μm3 exhibit a nonlinear increase in (carbon) mass density with decreasing volume. Small microorganisms dominate marine and freshwater bacterioplankton as well as soils and marine and terrestrial subsurface. The application of our experimentally-determined conversion factors will help to quantify the true contribution of these microorganisms to ecosystem functions and global microbial biomass

    Characterization of IgA response among women with incident HPV 16 infection

    Get PDF
    AbstractPrevious studies have characterized the prevalence and duration of serum IgG antibodies to human papillomavirus type 16 (HPV 16) in a well-studied cohort of college women, using viruslike particle- (VLP) based ELISAs. In this study IgA antibodies in cervical secretions and sera were examined using a newly developed capsomer-based ELISA and the patterns observed for serum IgG, serum IgA, and cervical IgA antibodies were compared. The median time to antibody detection from the first detection of HPV 16 DNA was 10.5 months for IgA in cervical secretions and 19.1 months for serum IgA. Serum IgA antibody conversion was observed less frequently and occurred later than IgA conversion in cervical secretions (P = 0.011) or serum IgG conversion (P = 0.051). The median time to antibody reversion, following seroconversion, was 12.0 months for IgA in cervical secretions and 13.6 months for serum IgA, whereas approximately 20% of women with serum IgG antibodies reverted within 36 months. Thus, the duration of IgA in cervical secretions and sera was shorter than the duration of serum IgG (P = 0.007 and 0.001)

    Rivastigmine but not vardenafil reverses cannabis-induced impairment of verbal memory in healthy humans

    Get PDF
    RATIONALE: One of the most often reported cognitive deficits of acute cannabis administration is an impaired recall of previously learned information. OBJECTIVE: The aim of the present study was to determine whether cannabis-induced memory impairment in humans is mediated via glutamatergic or cholinergic pathways. METHODS: Fifteen occasional cannabis users participated in a double-blind, placebo-controlled, six-way cross-over study. On separate test days, subjects received combinations of pretreatment (placebo, vardenafil 20 mg or rivastigmine 3 mg) and treatment (placebo or 1,376 mg cannabis/kg body weight). Cognitive tests were administered immediately after inhalation of treatment was finished and included measures of memory (visual verbal learning task, prospective memory test, Sternberg memory test), perceptual-motor control (critical tracking task), attention (divided attention task) and motor impulsivity (stop signal task). RESULTS: The results of this study demonstrate that subjects under the influence of cannabis were impaired in all memory tasks, in critical tracking, divided attention and the stop signal task. Pretreatment with rivastigmine attenuated the effect of cannabis on delayed recall and showed a trend towards significance on immediate recall. When cannabis was given in combination with vardenafil, there were no significant interaction effects in any of the tasks. CONCLUSIONS: The present data therefore suggest that acetylcholine plays an important role in cannabis-induced memory impairment, whereas similar results for glutamate have not been demonstrated in this study

    Human Glial Progenitor Cells Effectively Remyelinate the Demyelinated Adult Brain

    Get PDF
    Neonatally transplanted human glial progenitor cells (hGPCs) can myelinate the brains of myelin-deficient shiverer mice, rescuing their phenotype and survival. Yet, it has been unclear whether implanted hGPCs are similarly able to remyelinate the diffusely demyelinated adult CNS. We, therefore, ask if hGPCs could remyelinate both congenitally hypomyelinated adult shiverers and normal adult mice after cuprizone demyelination. In adult shiverers, hGPCs broadly disperse and differentiate as myelinating oligodendrocytes after subcortical injection, improving both host callosal conduction and ambulation. Implanted hGPCs similarly remyelinate denuded axons after cuprizone demyelination, whether delivered before or after demyelination. RNA sequencing (RNA-seq) of hGPCs back from cuprizone-demyelinated brains reveals their transcriptional activation of oligodendrocyte differentiation programs, while distinguishing them from hGPCs not previously exposed to demyelination. These data indicate the ability of transplanted hGPCs to disperse throughout the adult CNS, to broadly myelinate regions of dysmyelination, and also to be recruited as myelinogenic oligodendrocytes later in life, upon demyelination-associated demand

    Purple sulfur bacteria fix N-2 via molybdenum-nitrogenase in a low molybdenum Proterozoic ocean analogue

    Get PDF
    Biological N-2 fixation was key to the expansion of life on early Earth. The N-2-fixing microorganisms and the nitrogenase type used in the Proterozoic are unknown, although it has been proposed that the canonical molybdenum-nitrogenase was not used due to low molybdenum availability. We investigate N-2 fixation in Lake Cadagno, an analogue system to the sulfidic Proterozoic continental margins, using a combination of biogeochemical, molecular and single cell techniques. In Lake Cadagno, purple sulfur bacteria (PSB) are responsible for high N-2 fixation rates, to our knowledge providing the first direct evidence for PSB in situ N-2 fixation. Surprisingly, no alternative nitrogenases are detectable, and N-2 fixation is exclusively catalyzed by molybdenum-nitrogenase. Our results show that molybdenum-nitrogenase is functional at low molybdenum conditions in situ and that in contrast to previous beliefs, PSB may have driven N-2 fixation in the Proterozoic ocean. N-2 fixation was key to the expansion of life on Earth, but which organisms fixed N-2 and if Mo-nitrogenase was functional in the low Mo early ocean is unknown. Here, the authors show that purple sulfur bacteria fix N-2 using Mo-nitrogenase in a Proterozoic ocean analogue, despite low Mo conditions
    corecore