Purple sulfur bacteria fix N-2 via molybdenum-nitrogenase in a low molybdenum Proterozoic ocean analogue

Abstract

Biological N-2 fixation was key to the expansion of life on early Earth. The N-2-fixing microorganisms and the nitrogenase type used in the Proterozoic are unknown, although it has been proposed that the canonical molybdenum-nitrogenase was not used due to low molybdenum availability. We investigate N-2 fixation in Lake Cadagno, an analogue system to the sulfidic Proterozoic continental margins, using a combination of biogeochemical, molecular and single cell techniques. In Lake Cadagno, purple sulfur bacteria (PSB) are responsible for high N-2 fixation rates, to our knowledge providing the first direct evidence for PSB in situ N-2 fixation. Surprisingly, no alternative nitrogenases are detectable, and N-2 fixation is exclusively catalyzed by molybdenum-nitrogenase. Our results show that molybdenum-nitrogenase is functional at low molybdenum conditions in situ and that in contrast to previous beliefs, PSB may have driven N-2 fixation in the Proterozoic ocean. N-2 fixation was key to the expansion of life on Earth, but which organisms fixed N-2 and if Mo-nitrogenase was functional in the low Mo early ocean is unknown. Here, the authors show that purple sulfur bacteria fix N-2 using Mo-nitrogenase in a Proterozoic ocean analogue, despite low Mo conditions

    Similar works