122 research outputs found

    MAGE-A cancer/testis antigens inhibit MDM2 ubiquitylation function and promote increased levels of MDM4

    Get PDF
    Melanoma antigen A (MAGE-A) proteins comprise a structurally and biochemically similar sub-family of Cancer/Testis antigens that are expressed in many cancer types and are thought to contribute actively to malignancy. MAGE-A proteins are established regulators of certain cancer-associated transcription factors, including p53, and are activators of several RING finger-dependent ubiquitin E3 ligases. Here, we show that MAGE-A2 associates with MDM2, a ubiquitin E3 ligase that mediates ubiquitylation of more than 20 substrates including mainly p53, MDM2 itself, and MDM4, a potent p53 inhibitor and MDM2 partner that is structurally related to MDM2. We find that MAGE-A2 interacts with MDM2 via the N-terminal p53-binding pocket and the RING finger domain of MDM2 that is required for homo/hetero-dimerization and for E2 ligase interaction. Consistent with these data, we show that MAGE-A2 is a potent inhibitor of the E3 ubiquitin ligase activity of MDM2, yet it does not have any significant effect on p53 turnover mediated by MDM2. Strikingly, however, increased MAGE-A2 expression leads to reduced ubiquitylation and increased levels of MDM4. Similarly, silencing of endogenous MAGE-A expression diminishes MDM4 levels in a manner that can be rescued by the proteasomal inhibitor, bortezomid, and permits increased MDM2/MDM4 association. These data suggest that MAGE-A proteins can: (i) uncouple the ubiquitin ligase and degradation functions of MDM2; (ii) act as potent inhibitors of E3 ligase function; and (iii) regulate the turnover of MDM4. We also find an association between the presence of MAGE-A and increased MDM4 levels in primary breast cancer, suggesting that MAGE-A-dependent control of MDM4 levels has relevance to cancer clinically

    Enhancing Specific Disruption of Intracellular Protein Complexes by Hydrocarbon Stapled Peptides Using Lipid Based Delivery

    Get PDF
    Linear peptides can mimic and disrupt protein-protein interactions involved in critical cell signaling pathways. Such peptides however are usually protease sensitive and unable to engage with intracellular targets due to lack of membrane permeability. Peptide stapling has been proposed to circumvent these limitations but recent data has suggested that this method does not universally solve the problem of cell entry and can lead to molecules with off target cell lytic properties. To address these issues a library of stapled peptides was synthesized and screened to identify compounds that bound Mdm2 and activated cellular p53. A lead peptide was identified that activated intracellular p53 with negligible nonspecific cytotoxicity, however it still bound serum avidly and only showed a marginal improvement in cellular potency. These hurdles were overcome by successfully identifying a pyridinium-based cationic lipid formulation, which significantly improved the activity of the stapled peptide in a p53 reporter cell line, principally through increased vesicular escape. These studies under score that stapled peptides, which are cell permeable and target specific, can be identified with rigorous experimental design and that these properties can be improved through use with lipid based formulations. This work should facilitate the clinical translation of stapled peptides

    C-Terminal Substitution of MDM2 Interacting Peptides Modulates Binding Affinity by Distinctive Mechanisms

    Get PDF
    The complex between the proteins MDM2 and p53 is a promising drug target for cancer therapy. The residues 19–26 of p53 have been biochemically and structurally demonstrated to be a most critical region to maintain the association of MDM2 and p53. Variation of the amino acid sequence in this range obviously alters the binding affinity. Surprisingly, suitable substitutions contiguous to this region of the p53 peptides can yield tightly binding peptides. The peptide variants may differ by a single residue that vary little in their structural conformations and yet are characterized by large differences in their binding affinities. In this study a systematic analysis into the role of single C-terminal mutations of a 12 residue fragment of the p53 transactivation domain (TD) and an equivalent phage optimized peptide (12/1) were undertaken to elucidate their mechanistic and thermodynamic differences in interacting with the N-terminal of MDM2. The experimental results together with atomistically detailed dynamics simulations provide insight into the principles that govern peptide design protocols with regard to protein-protein interactions and peptidomimetic design

    mRNA Display Selection of an Optimized MDM2-Binding Peptide That Potently Inhibits MDM2-p53 Interaction

    Get PDF
    p53 is a tumor suppressor protein that prevents tumorigenesis through cell cycle arrest or apoptosis of cells in response to cellular stress such as DNA damage. Because the oncoprotein MDM2 interacts with p53 and inhibits its activity, MDM2-p53 interaction has been a major target for the development of anticancer drugs. While previous studies have used phage display to identify peptides (such as DI) that inhibit the MDM2-p53 interaction, these peptides were not sufficiently optimized because the size of the phage-displayed random peptide libraries did not cover all of the possible sequences. In this study, we performed selection of MDM2-binding peptides from large random peptide libraries in two stages using mRNA display. We identified an optimal peptide named MIP that inhibited the MDM2-p53 and MDMX-p53 interactions 29- and 13-fold more effectively than DI, respectively. Expression of MIP fused to the thioredoxin scaffold protein in living cells by adenovirus caused stabilization of p53 through its interaction with MDM2, resulting in activation of the p53 pathway. Furthermore, expression of MIP also inhibited tumor cell proliferation in a p53-dependent manner more potently than DI. These results show that two-stage, mRNA-displayed peptide selection is useful for the rapid identification of potent peptides that target oncoproteins

    Enabling large-scale design, synthesis and validation of small molecule protein-protein antagonists

    Get PDF
    Although there is no shortage of potential drug targets, there are only a handful known low-molecular-weight inhibitors of protein-protein interactions (PPIs). One problem is that current efforts are dominated by low-yield high-throughput screening, whose rigid framework is not suitable for the diverse chemotypes present in PPIs. Here, we developed a novel pharmacophore-based interactive screening technology that builds on the role anchor residues, or deeply buried hot spots, have in PPIs, and redesigns these entry points with anchor-biased virtual multicomponent reactions, delivering tens of millions of readily synthesizable novel compounds. Application of this approach to the MDM2/p53 cancer target led to high hit rates, resulting in a large and diverse set of confirmed inhibitors, and co-crystal structures validate the designed compounds. Our unique open-access technology promises to expand chemical space and the exploration of the human interactome by leveraging in-house small-scale assays and user-friendly chemistry to rationally design ligands for PPIs with known structure. © 2012 Koes et al

    Disorder Predictors Also Predict Backbone Dynamics for a Family of Disordered Proteins

    Get PDF
    Several algorithms have been developed that use amino acid sequences to predict whether or not a protein or a region of a protein is disordered. These algorithms make accurate predictions for disordered regions that are 30 amino acids or longer, but it is unclear whether the predictions can be directly related to the backbone dynamics of individual amino acid residues. The nuclear Overhauser effect between the amide nitrogen and hydrogen (NHNOE) provides an unambiguous measure of backbone dynamics at single residue resolution and is an excellent tool for characterizing the dynamic behavior of disordered proteins. In this report, we show that the NHNOE values for several members of a family of disordered proteins are highly correlated with the output from three popular algorithms used to predict disordered regions from amino acid sequence. This is the first test between an experimental measure of residue specific backbone dynamics and disorder predictions. The results suggest that some disorder predictors can accurately estimate the backbone dynamics of individual amino acids in a long disordered region

    p53 Amino-Terminus Region (1–125) Stabilizes and Restores Heat Denatured p53 Wild Phenotype

    Get PDF
    BACKGROUND:The intrinsically disordered N-ter domain (NTD) of p53 encompasses approximately hundred amino acids that contain a transactivation domain (1-73) and a proline-rich domain (64-92) and is responsible for transactivation function and apoptosis. It also possesses an auto-inhibitory function as its removal results in remarkable reduction in dissociation of p53 from DNA. PRINCIPAL FINDINGS/METHODOLOGY:In this report, we have discovered that p53-NTD spanning amino acid residues 1-125 (NTD125) interacted with WT p53 and stabilized its wild type conformation under physiological and elevated temperatures, both in vitro and in cellular systems. NTD125 prevented irreversible thermal aggregation of heat denatured p53, enhanced p21-5'-DBS binding and further restored DBS binding activity of heat-denatured p53, in vitro, in a dose-dependent manner. In vivo ELISA and immunoprecipitation analysis of NTD125-transfected cells revealed that NTD125 shifted equilibrium from p53 mutant to wild type under heat stress conditions. Further, NTD125 initiated nuclear translocation of cytoplasmic p53 in transcriptionally active state in order to activate p53 downstream genes such as p21, Bax, PUMA, Noxa and SUMO. CONCLUSION/SIGNIFICANCE:Here, we showed that a novel chaperone-like activity resides in p53-N-ter region. This study might have significance in understanding the role of p53-NTD in p53 stabilization, conformational activation and apoptosis under heat-stress conditions

    Identification of tumour-associated and germ line p53 mutations in canine mammary cancer

    Get PDF
    Mutations of the tumour suppressor p53 gene are found in a number of spontaneous canine cancers and may contribute to increased cytogenetic alterations and tumour formation. Using reverse transcription and DNA amplification, we isolated p53 cDNA from normal and tumour tissue of ten canine mammary cancer patients. DNA sequencing identified p53 mutations in three of the ten patients. These included tumour-associated p53 gene mutations within exons 2 and 5 and a germ line deletion of exons 3 to 7. These results support a role for p53 inactivation in canine mammary tumour formation and breed predisposition to cancer. Such information could prove invaluable in the successful outbreeding of inherited predisposition to cancer in the dog. A putative polymorphism was also identified at codon 69 in exon 4 and we discuss the possibility that similar polymorphisms may be associated with human breast cancer. © 1999 Cancer Research Campaig
    corecore