6 research outputs found
Towards good practice guidelines for the contour method of residual stress measurement
Accurate measurement of residual stress in metallic components using the contour method relies on the achievement of a good quality cut, on the appropriate measurement of the deformed cut surface and on the robust analysis of the measured data. There is currently no published standard or code of practice for the contour method. As a first step towards such a standard, this study draws on research investigations addressing the three main steps in the method: how best to cut the specimens; how to measure the deformation contour of the cut surface; and how to analyse the data. Good practice guidance is provided throughout the text accompanied by more detailed observations and advice tabulated in Appendi
Structural and morphological analysis of zinc incorporated non-stoichiometric hydroxyapatite nano powders
ABSTRACT In this study, Zn incorporated non-stoichiometric hydroxyapatite (nHAp) was synthesized via precipitation method and effect of the incorporation of Zn (fraction: 2, 4, 6 and 8 mol-%) on the microstructure of nHAp was studied by XRD, FTIR analysis and SEM-EDS techniques. The formation of nHAp was confirmed by XRD and FTIR those showed that no secondary phase was formed through the Zn incorporation. The SEM studies also revealed that particles were formed in nano-metric size (30-60 nm). It was found that crystallite and particle size of Zn incorporated nHAp gradually decreased up to 6 mol-%, and started to increase while the Zn fraction reached up to the 8 mol-% and hence the morphology of the aggregated products was also changed. It can be concluded that the incorporation of Zn cations cause to form nHAp phase. Furthermore, the nHAp microstructure has deviated from stoichiometric condition by incorporation of more Zn cations
ALICE upgrades during the LHC Long Shutdown 2
International audienceA Large Ion Collider Experiment (ALICE) has been conceived and constructed as a heavy-ion experiment at the LHC. During LHC Runs 1 and 2, it has produced a wide range of physics results using all collision systems available at the LHC. In order to best exploit new physics opportunities opening up with the upgraded LHC and new detector technologies, the experiment has undergone a major upgrade during the LHC Long Shutdown 2 (2019–2022). This comprises the move to continuous readout, the complete overhaul of core detectors, as well as a new online event processing farm with a redesigned online-offline software framework. These improvements will allow to record Pb-Pb collisions at rates up to 50 kHz, while ensuring sensitivity for signals without a triggerable signature