192 research outputs found

    Synchronization of weakly perturbed Markov chain oscillators

    Full text link
    Rate processes are simple and analytically tractable models for many dynamical systems which switch stochastically between a discrete set of quasi stationary states but they may also approximate continuous processes by coarse grained, symbolic dynamics. In contrast to limit cycle oscillators which are weakly perturbed by noise, the stochasticity in such systems may be strong and more complicated system topologies than the circle can be considered. Here we employ second order, time dependent perturbation theory to derive expressions for the mean frequency and phase diffusion constant of discrete state oscillators coupled or driven through weakly time dependent transition rates. We also describe a method of global control to optimize the response of the mean frequency in complex transition networks.Comment: 16 pages, 7 figure

    Collective Phase Sensitivity

    Full text link
    The collective phase response to a macroscopic external perturbation of a population of interacting nonlinear elements exhibiting collective oscillations is formulated for the case of globally-coupled oscillators. The macroscopic phase sensitivity is derived from the microscopic phase sensitivity of the constituent oscillators by a two-step phase reduction. We apply this result to quantify the stability of the macroscopic common-noise induced synchronization of two uncoupled populations of oscillators undergoing coherent collective oscillations.Comment: 6 pages, 3 figure

    Design principle of multi-cluster and desynchronized states in oscillatory media via nonlinear global feedback

    Full text link
    A theoretical framework is developed for a precise control of spatial patterns in oscillatory media using nonlinear global feedback, where a proper form of the feedback function corresponding to a specific pattern is predicted through the analysis of a phase diffusion equation with global coupling. In particular, feedback functions that generate the following spatial patterns are analytically given: i) 2-cluster states with an arbitrary population ratio, ii) equally populated multi-cluster states, and iii) a desynchronized state. Our method is demonstrated numerically by using the Brusselator model in the oscillatory regime. Experimental realization is also discussed.Comment: 18 pages, 4 figures, accepted in New Journal of Physic

    Noise-Induced Synchronization of a Large Population of Globally Coupled Nonidentical Oscillators

    Full text link
    We study a large population of globally coupled phase oscillators subject to common white Gaussian noise and find analytically that the critical coupling strength between oscillators for synchronization transition decreases with an increase in the intensity of common noise. Thus, common noise promotes the onset of synchronization. Our prediction is confirmed by numerical simulations of the phase oscillators as well as of limit-cycle oscillators

    Collective dynamical response of coupled oscillators with any network structure

    Full text link
    We formulate a reduction theory that describes the response of an oscillator network as a whole to external forcing applied nonuniformly to its constituent oscillators. The phase description of multiple oscillator networks coupled weakly is also developed. General formulae for the collective phase sensitivity and the effective phase coupling between the oscillator networks are found. Our theory is applicable to a wide variety of oscillator networks undergoing frequency synchronization. Any network structure can systematically be treated. A few examples are given to illustrate our theory.Comment: 4 pages, 2 figure

    Slow Switching in Globally Coupled Oscillators: Robustness and Occurrence through Delayed Coupling

    Get PDF
    The phenomenon of slow switching in populations of globally coupled oscillators is discussed. This characteristic collective dynamics, which was first discovered in a particular class of the phase oscillator model, is a result of the formation of a heteroclinic loop connecting a pair of clustered states of the population. We argue that the same behavior can arise in a wider class of oscillator models with the amplitude degree of freedom. We also argue how such heteroclinic loops arise inevitably and persist robustly in a homogeneous population of globally coupled oscillators. Although the heteroclinic loop might seem to arise only exceptionally, we find that it appears rather easily by introducing the time-delay in the population which would otherwise exhibit perfect phase synchrony. We argue that the appearance of the heteroclinic loop induced by the delayed coupling is then characterized by transcritical and saddle-node bifurcations. Slow switching arises when the system with a heteroclinic loop is weakly perturbed. This will be demonstrated with a vector model by applying weak noises. Other types of weak symmetry-breaking perturbations can also cause slow switching.Comment: 10 pages, 14 figures, RevTex, twocolumn, to appear in Phys. Rev.

    A Proposal of a Practical and Optimal Prophylactic Strategy for Peritoneal Recurrence

    Get PDF
    Peritoneal metastasis, which often arises in patients with advanced gastric cancer, is well known as a miserable and ill-fated disease. Once peritoneal metastasis is formed, it is extremely difficult to defeat. We advocated EIPL (extensive intraoperative peritoneal lavage) as a useful and practical adjuvant surgical technique for those gastric cancer patients who are likely to suffer from peritoneal recurrence. In this paper, we review the effect of EIPL therapy on prevention of peritoneal recurrence on patients with peritoneal free cancer cells without overt peritoneal metastasis (CY+/P−) through the prospective randomized study, and we verified its potential as an optimal and standard prophylactic therapeutic strategy for peritoneal recurrence
    corecore