146 research outputs found

    Systematic review of renal denervation for the management of cardiac arrhythmias

    Get PDF
    Background In the wake of the controversy surrounding the SYMPLICITY HTN-3 trial and data from subsequent trials, this review aims to perform an updated and more comprehensive review of the impact of renal sympathetic denervation on cardiac arrhythmias. Methods and results A systematic search was performed using the Medline, Scopus and Embase databases using the terms “Renal Denervation” AND “Arrhythmias or Atrial or Ventricular”, limited to Human and English language studies within the last 10 years. This search yielded 19 relevant studies (n = 6 randomised controlled trials, n = 13 non-randomised cohort studies) which comprised 783 patients. The studies show RSD is a safe procedure, not associated with increases in complications or mortality post-procedure. Importantly, there is no evidence RSD is associated with a deterioration in renal function, even in patients with chronic kidney disease. RSD with or without adjunctive pulmonary vein isolation (PVI) is associated with improvements in freedom from atrial fibrillation (AF), premature atrial complexes (PACs), ventricular arrhythmias and other echocardiographic parameters. Significant reductions in ambulatory and office blood pressure were also observed in the majority of studies. Conclusion This review provides evidence based on original research that ‘second generation’ RSD is safe and is associated with reductions in short-term blood pressure and AF burden. However, the authors cannot draw firm conclusions with regards to less prominent arrhythmia subtypes due to the paucity of evidence available. Large multi-centre RCTs investigating the role of RSD are necessary to comprehensively assess the efficacy of the procedure treating various arrhythmias

    Dysregulation of epicardial adipose tissue in cachexia due to heart failure. the role of natriuretic peptides and cardiolipin

    Get PDF
    Background: Cachexia worsens long-term prognosis of patients with heart failure (HF). Effective treatment of cachexia is missing. We seek to characterize mechanisms of cachexia in adipose tissue, which could serve as novel targets for the treatment. Methods: The study was conducted in advanced HF patients (n = 52; 83% male patients) undergoing heart transplantation. Patients with ≥7.5% non-intentional body weight (BW) loss during the last 6 months were rated cachectic. Clinical characteristics and circulating markers were compared between cachectic (n = 17) and the remaining, BW-stable patients. In epicardial adipose tissue (EAT), expression of selected genes was evaluated, and a combined metabolomic/lipidomic analysis was performed to assess (i) the role of adipose tissue metabolism in the development of cachexia and (ii) potential impact of cachexia-associated changes on EAT-myocardium environment. Results: Cachectic vs. BW-stable patients had higher plasma levels of natriuretic peptide B (BNP; 2007 ± 1229 vs. 1411 ± 1272 pg/mL; P = 0.010) and lower EAT thickness (2.1 ± 0.8 vs. 2.9 ± 1.4 mm; P = 0.010), and they were treated with ~2.5-fold lower dose of both β-blockers and angiotensin-converting enzyme inhibitors or angiotensin receptor blockers (ACE/ARB-inhibitors). The overall pattern of EAT gene expression suggested simultaneous activation of lipolysis and lipogenesis in cachexia. Lower ratio between expression levels of natriuretic peptide receptors C and A was observed in cachectic vs. BW-stable patients (0.47 vs. 1.30), supporting activation of EAT lipolysis by natriuretic peptides. Fundamental differences in metabolome/lipidome between BW-stable and cachectic patients were found. Mitochondrial phospholipid cardiolipin (CL), specifically the least abundant CL 70:6 species (containing C16:1, C18:1, and C18:2 acyls), was the most discriminating analyte (partial least squares discriminant analysis; variable importance in projection score = 4). Its EAT levels were higher in cachectic as compared with BW-stable patients and correlated with the degree of BW loss during the last 6 months (r = −0.94; P = 0.036). Conclusions: Our results suggest that (i) BNP signalling contributes to changes in EAT metabolism in cardiac cachexia and (ii) maintenance of stable BW and ‘healthy’ EAT-myocardium microenvironment depends on the ability to tolerate higher doses of both ACE/ARB inhibitors and β-adrenergic blockers. In line with preclinical studies, we show for the first time in humans the association of cachexia with increased adipose tissue levels of CL. Specifically, CL 70:6 could precipitate wasting of adipose tissue, and thus, it could represent a therapeutic target to ameliorate cachexia

    Combined intervention with pioglitazone and n-3 fatty acids in metformin-treated type 2 diabetic patients: improvement of lipid metabolism

    No full text
    Background: The marine n-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) exert numerous beneficial effects on health, but their potency to improve treatment of type 2 diabetic (T2D) patients remains poorly characterized. We aimed to evaluate the effect of a combination intervention using EPA?+?DHA and the insulin-sensitizing drug pioglitazone in overweight/obese T2D patients already treated with metformin.Methods: In a parallel-group, four-arm, randomized trial, 69 patients (66 % men) were assigned to 24-week-intervention using: (i) corn oil (5 g/day; Placebo), (ii) pioglitazone (15 mg/day; Pio), (iii) EPA?+?DHA concentrate (5 g/day, containing ~2.8 g EPA?+?DHA; Omega-3), or (iv) pioglitazone and EPA?+?DHA concentrate (Pio&amp; Omega-3). Data from 60 patients were used for the final evaluation. At baseline and after intervention, various metabolic markers, adiponectin and cytokines were evaluated in serum using standard procedures, EPA?+?DHA content in serum phospholipids was evaluated using shotgun lipidomics and mass spectrometry, and hyperinsulinemic-euglycemic clamp and meal test were also performed. Indirect calorimetry was conducted after the intervention. Primary endpoints were changes from baseline in insulin sensitivity evaluated using hyperinsulinemic-euglycemic clamp and in serum triacylglycerol concentrations in fasting state. Secondary endpoints included changes in fasting glycemia and glycated hemoglobin (HbA1c), changes in postprandial glucose, free fatty acid and triacylglycerol concentrations, metabolic flexibility assessed by indirect calorimetry, and inflammatory markers.Results: Omega-3 and Pio&amp; Omega-3 increased EPA?+?DHA content in serum phospholipids. Pio and Pio&amp; Omega-3 increased body weight and adiponectin levels. Both fasting glycemia and HbA1c were increased by Omega-3, but were unchanged by Pio&amp; Omega-3. Insulin sensitivity was not affected by Omega-3, while it was improved by Pio&amp; Omega-3. Fasting triacylglycerol concentrations and inflammatory markers were not significantly affected by any of the interventions. Lipid metabolism in the meal test and metabolic flexibility were additively improved by Pio&amp; Omega-3.Conclusion: Besides preventing a modest negative effect of n-3 fatty acids on glycemic control, the combination of pioglitazone and EPA?+?DHA can be used to improve lipid metabolism in T2D patients on stable metformin therapy.Trial registration: EudraCT number 2009-011106-42.<br/

    Metabolic Effects of n-3 PUFA as Phospholipids Are Superior to Triglycerides in Mice Fed a High-Fat Diet: Possible Role of Endocannabinoids

    Get PDF
    Background n-3 polyunsaturated fatty acids, namely docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), reduce the risk of cardiovascular disease and can ameliorate many of obesity-associated disorders. We hypothesised that the latter effect will be more pronounced when DHA/EPA is supplemented as phospholipids rather than as triglycerides. Methodology/Principal Findings In a ‘prevention study’, C57BL/6J mice were fed for 9 weeks on either a corn oil-based high-fat obesogenic diet (cHF; lipids ~35% wt/wt), or cHF-based diets in which corn oil was partially replaced by DHA/EPA, admixed either as phospholipids or triglycerides from marine fish. The reversal of obesity was studied in mice subjected to the preceding cHF-feeding for 4 months. DHA/EPA administered as phospholipids prevented glucose intolerance and tended to reduce obesity better than triglycerides. Lipemia and hepatosteatosis were suppressed more in response to dietary phospholipids, in correlation with better bioavailability of DHA and EPA, and a higher DHA accumulation in the liver, white adipose tissue (WAT), and muscle phospholipids. In dietary obese mice, both DHA/EPA concentrates prevented a further weight gain, reduced plasma lipid levels to a similar extent, and tended to improve glucose tolerance. Importantly, only the phospholipid form reduced plasma insulin and adipocyte hypertrophy, while being more effective in reducing hepatic steatosis and low-grade inflammation of WAT. These beneficial effects were correlated with changes of endocannabinoid metabolome in WAT, where phospholipids reduced 2-arachidonoylglycerol, and were more effective in increasing anti-inflammatory lipids such as N-docosahexaenoylethanolamine. Conclusions/Significance Compared with triglycerides, dietary DHA/EPA administered as phospholipids are superior in preserving a healthy metabolic profile under obesogenic conditions, possibly reflecting better bioavalability and improved modulation of the endocannabinoid system activity in WA

    Lumazine Synthase Protein Nanoparticle-Gd(III)-DOTA Conjugate as a T1 contrast agent for high-field MRI

    Get PDF
    With the applications of magnetic resonance imaging (MRI) at higher magnetic fields increasing, there is demand for MRI contrast agents with improved relaxivity at higher magnetic fields. Macromolecule-based contrast agents, such as protein-based ones, are known to yield significantly higher r(1) relaxivity at low fields, but tend to lose this merit when used as T-1 contrast agents (r(1)/r(2) = 0.5 similar to 1), with their r(1) decreasing and r(2) increasing as magnetic field strength increases. Here, we developed and characterized an in vivo applicable magnetic resonance (MR) positive contrast agent by conjugating Gd(III)-chelating agent complexes to lumazine synthase isolated from Aquifex aeolicus (AaLS). The r(1) relaxivity of Gd(III)-DOTA-AaLS-R108C was 16.49 mM(-1)s(-1) and its r(1)/r(2) ratio was 0.52 at the magnetic field strength of 7 T. The results of 3D MR angiography demonstrated the feasibility of vasculature imaging within 2 h of intravenous injection of the agent and a significant reduction in T-1 values were observed in the tumor region 7 h post-injection in the SCC-7 flank tumor model. Our findings suggest that Gd(III)-DOTA-AaLS-R108C could serve as a potential theranostic nanoplatform at high magnetic field strength.open0
    corecore