94 research outputs found

    Constitutive cytoplasmic localization of p21Waf1/Cip1 affects the apoptotic process in monocytic leukaemia

    Get PDF
    In the present study, we analysed the expression and localization of p21Waf1/Cip1 in normal and malignant haematopoietic cells. We demonstrate that in normal monocytic cells, protein kinase C (PKC)-induced p21 gene activation, which is nuclear factor-κB (NF-κB) independent, results in predominantly cytoplasmic localized p21 protein. In acute monocytic leukaemia (M4, M5), monocytic blasts (N=12) show constitutive cytoplasmic p21 expression in 75% of the cases, while in myeloid leukaemic blasts (N=10), low nuclear and cytoplasmic localization of p21 could be detected, which is also PKC dependent. Constitutive p21 expression in monocytic leukaemia might have important antiapoptotic functions. This is supported by the finding that in U937 cells overexpressing p21, VP16-induced apoptosis is significantly reduced (20.0±0.9 vs 55.8±3.8%, P<0.01, N=5), reflected by a reduced phosphorylation of p38 and JNK. Similarly, AML blasts with high cytoplasmic p21 were less sensitive to VP16-induced apoptosis as compared to AML cases with low or undetectable p21 expression (42.25 vs 12.3%, P<0.01). Moreover, complex formation between p21 and ASK1 could be demonstrated in AML cells, by means of coimmunoprecipitation. In summary, these results indicate that p21 has an antiapoptotic role in monocytic leukaemia, and that p21 expression is regulated in a PKC-dependent and NF-κB independent manner.

    Targeting BTK for the treatment of FLT3-ITD mutated acute myeloid leukemia

    Get PDF
    Approximately 20% of patients with acute myeloid leukaemia (AML) have a mutation in FMS-like-tyrosine-kinase-3 (FLT3). FLT3 is a trans-membrane receptor with a tyrosine kinase domain which, when activated, initiates a cascade of phosphorylated proteins including the SRC family of kinases. Recently our group and others have shown that pharmacologic inhibition and genetic knockdown of Bruton's tyrosine kinase (BTK) blocks AML blast proliferation, leukaemic cell adhesion to bone marrow stromal cells as well as migration of AML blasts. The anti-proliferative effects of BTK inhibition in human AML are mediated via inhibition of downstream NF-κB pro-survival signalling however the upstream drivers of BTK activation in human AML have yet to be fully characterised. Here we place the FLT3-ITD upstream of BTK in AML and show that the BTK inhibitor ibrutinib inhibits the survival and proliferation of FLT3-ITD primary AML blasts and AML cell lines. Furthermore ibrutinib inhibits the activation of downstream kinases including MAPK, AKT and STAT5. In addition we show that BTK RNAi inhibits proliferation of FLT3-ITD AML cells. Finally we report that ibrutinib reverses the cyto-protective role of BMSC on FLT3-ITD AML survival. These results argue for the evaluation of ibrutinib in patients with FLT3-ITD mutated AML

    Aberrant over-expression of a forkhead family member, FOXO1A, in a brain tumor cell line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mammalian FOXO (forkhead box, O subclass) proteins are a family of pleiotropic transcription factors involved in the regulation of a broad range of cellular processes critical for survival. Despite the essential and diverse roles of the FOXO family members in human cells and their involvement in tumor pathogenesis, the regulation of <it>FOXO </it>expression remains poorly understood. We have addressed the mechanisms underlying the high level of expression of the <it>FOXO1A </it>gene in a cell line, PER-453, derived from a primitive neuroectodermal tumor of the central nervous system (CNS-PNET).</p> <p>Methods</p> <p>The status of the <it>FOXO1A </it>locus in the PER-453 CNS-PNET cell line was investigated by Southern blotting and DNA sequence analysis of the proximal promoter, 5'-UTR, open reading frame and 3'-UTR. FOXO1A expression was assessed by conventional and quantitative RT-PCR, Northern and Western blotting.</p> <p>Results</p> <p>Quantitative real-time RT-PCR (qRT-PCR) data indicated that after normalization to <it>ACTB </it>mRNA levels, canonical <it>FOXO1A </it>mRNA expression in the PER-453 cell line was 124-fold higher than the average level of five other CNS-PNET cell lines tested, 24-fold higher than the level in whole fetal brain, and 3.5-fold higher than the level in fetal brain germinal matrix cells. No mutations within the <it>FOXO1A </it>open reading frame or gross rearrangements of the <it>FOXO1A </it>locus were detected. However, a single nucleotide change within the proximal promoter and several nucleotide changes within the 3'-UTR were identified. In addition, two novel <it>FOXO1A </it>transcripts were isolated that differ from the canonical transcript by alternative splicing within the 3'-UTR.</p> <p>Conclusion</p> <p>The CNS-PNET cell line, PER-453, expresses <it>FOXO1A </it>at very high levels relative to most normal and cancer cells from a broad range of tissues. The <it>FOXO1A </it>open reading frame is wild type in the PER-453 cell line and the abnormally high <it>FOXO1A </it>mRNA expression is not due to mutations affecting the 5'-UTR or proximal promoter. Over expression of <it>FOXO1A </it>may be the result of PER-453 specific epimutations or imbalances in regulatory factors acting at the promoter and/or 3'-UTR.</p

    GSI-I (Z-LLNle-CHO) inhibits γ-secretase and the proteosome to trigger cell death in precursor-B acute lymphoblastic leukemia

    Get PDF
    Gamma secretase inhibitors (GSIs) comprise a growing class of compounds that interfere with the membrane-bound Notch signaling protein and its downstream intra-nuclear transcriptional targets. As GSI-I (Z-LLNle-CHO) is also a derivative of a widely used proteosome inhibitor MG-132, we hypothesized that this compound might be active in precursor-B acute lymphoblastic leukemia (ALL) cell lines and patient samples. We found that GSI-I treatment of precursor-B ALL blasts induced apoptotic cell death within 18–24 h. With confirmation using RNA and protein analyses, GSI-I blocked nuclear accumulation of cleaved Notch1 and Notch2, and inhibited Notch targets Hey2 and Myc. Microarray analyses of 207 children with high-risk precursor-B ALL demonstrate that Notch pathway expression is a common feature of these neoplasms. However, microarray studies also implicated additional transcriptional targets in GSI-I-dependent cell death, including genes in the unfolded protein response, nuclear factor-κB and p53 pathways. Z-LLNle-CHO blocks both γ-secretase and proteosome activity, inducing more robust cell death in precursor-B ALL cells than either proteosome-selective or γ-secretase-selective inhibitors alone. Using Z-LLNle-CHO in a nonobese diabetes/severe combined immunodeficiency (NOD/SCID) precursor-B ALL xenograft model, we found that GSI-I alone delayed or prevented engraftment of B-lymphoblasts in 50% of the animals comprising the experimental group, suggesting that this compound is worthy of additional testing

    Iron(III)-Salophene: An Organometallic Compound with Selective Cytotoxic and Anti-Proliferative Properties in Platinum-Resistant Ovarian Cancer Cells

    Get PDF
    Background: In this pioneer study to the biological activity of organometallic compound Iron(III)-salophene (Fe-SP) the specific effects of Fe-SP on viability, morphology, proliferation, and cell-cycle progression on platinum-resistant ovariancancer cell lines were investigated. Methodology/Principal Findings: Fe-SP displayed selective cytotoxicity against SKOV-3 and OVCAR-3 (ovarian epithelial adenocarcinoma) cell lines at concentrations between 100 nM and 1 μM, while the viability of HeLa cells (epithelial cervix adenocarcinoma) or primary lung or skin fibroblasts was not affected. SKOV-3 cells in contrast to fibroblasts after treatment with Fe-SP revealed apparent hallmarks of apoptosis including densely stained nuclear granular bodies within fragmented nuclei, highly condensed chromatin and chromatin fragmentation. Fe-SP treatment led to the activation of markers of the extrinsic (Caspase-8) and intrinsic (Caspase-9) pathway of apoptosis as well as of executioner Caspase-3 while PARP-1 was deactivated. Fe-SP exerted effects as an anti-proliferative agent with an IC50 value of 300 nM and caused delayed progression of cells through S-phase phase of the cell cycle resulting in a complete S-phase arrest. When intra-peritoneally applied to rats Fe-SP did not show any systemic toxicity at concentrations that in preliminary trials were determined to be chemotherapeutic relevant doses in a rat ovarian cancer cell model. Conclusion/Significance: The present report suggests that Fe-SP is a potent growth-suppressing agent in vitro for cell lines derived from ovarian cancer and a potential therapeutic drug to treat such tumors in viv

    Suppression of uPA and uPAR Attenuates Angiogenin Mediated Angiogenesis in Endothelial and Glioblastoma Cell Lines

    Get PDF
    In our earlier reports, we showed that downregulation of uPA and uPAR inhibited glioma tumor angiogenesis in SNB19 cells, and intraperitoneal injection of a hairpin shRNA expressing plasmid targeting uPA and uPAR inhibited angiogenesis in nude mice. The exact mechanism by which inhibition of angiogenesis takes place is not clearly understood.In the present study, we have attempted to investigate the mechanism by which uPA/uPAR downregulation by shRNA inhibits angiogenesis in endothelial and glioblastoma cell lines. uPA/uPAR downregulation by shRNA in U87 MG and U87 SPARC co-cultures with endothelial cells inhibited angiogenesis as assessed by in vitro angiogenesis assay and in vivo dorsal skin-fold chamber model in nude mice. Protein antibody array analysis of co-cultures of U87 and U87 SPARC cells with endothelial cells treated with pU2 (shRNA against uPA and uPAR) showed decreased angiogenin secretion and angiopoietin-1 as well as several other pro-angiogenic molecules. Therefore, we investigated the role of angiogenin and found that nuclear translocation, ribonucleolytic and 45S rRNA synthesis, which are all critical for angiogenic function of angiogenin, were significantly inhibited in endothelial cells transfected with uPA, uPAR and uPA/uPAR when compared with controls. Moreover, uPA and uPAR downregulation significantly inhibited the phosphorylation of Tie-2 receptor and also down regulated FKHR activation in the nucleus of endothelial cells via the GRB2/AKT/BAD pathway. Treatment of endothelial cells with ruPA increased angiogenin secretion and angiogenin expression as determined by ELISA and western blotting in a dose-dependent manner. The amino terminal fragment of uPA down regulated ruPA-induced angiogenin in endothelial cells, thereby suggesting that uPA plays a critical role in positively regulating angiogenin in glioblastoma cells.Taken together, our results suggest that uPA/uPAR downregulation suppresses angiogenesis in endothelial cells induced by glioblastoma cell lines partially by downregulation of angiogenin and by inhibition of the angiopoietin-1/AKT/FKHR pathway

    Genome-wide identification of FoxO-dependent gene networks in skeletal muscle during C26 cancer cachexia

    Get PDF
    BACKGROUND: Evidence from cachectic cancer patients and animal models of cancer cachexia supports the involvement of Forkhead box O (FoxO) transcription factors in driving cancer-induced skeletal muscle wasting. However, the genome-wide gene networks and associated biological processes regulated by FoxO during cancer cachexia are unknown. We hypothesize that FoxO is a central upstream regulator of diverse gene networks in skeletal muscle during cancer that may act coordinately to promote the wasting phenotype. METHODS: To inhibit endogenous FoxO DNA-binding, we transduced limb and diaphragm muscles of mice with AAV9 containing the cDNA for a dominant negative (d.n.) FoxO protein (or GFP control). The d.n.FoxO construct consists of only the FoxO3a DNA-binding domain that is highly homologous to that of FoxO1 and FoxO4, and which outcompetes and blocks endogenous FoxO DNA binding. Mice were subsequently inoculated with Colon-26 (C26) cells and muscles harvested 26 days later. RESULTS: Blocking FoxO prevented C26-induced muscle fiber atrophy of both locomotor muscles and the diaphragm and significantly spared force deficits. This sparing of muscle size and function was associated with the differential regulation of 543 transcripts (out of 2,093) which changed in response to C26. Bioinformatics analysis of upregulated gene transcripts that required FoxO revealed enrichment of the proteasome, AP-1 and IL-6 pathways, and included several atrophy-related transcription factors, including Stat3, Fos, and Cebpb. FoxO was also necessary for the cancer-induced downregulation of several gene transcripts that were enriched for extracellular matrix and sarcomere protein-encoding genes. We validated these findings in limb muscles and the diaphragm through qRT-PCR, and further demonstrate that FoxO1 and/or FoxO3a are sufficient to increase Stat3, Fos, Cebpb, and the C/EBPβ target gene, Ubr2. Analysis of the Cebpb proximal promoter revealed two bona fide FoxO binding elements, which we further establish are necessary for Cebpb promoter activation in response to IL-6, a predominant cytokine in the C26 cancer model. CONCLUSIONS: These findings provide new evidence that FoxO-dependent transcription is a central node controlling diverse gene networks in skeletal muscle during cancer cachexia, and identifies novel candidate genes and networks for further investigation as causative factors in cancer-induced wasting.R01 AR060217 - NIAMS NIH HHS; R01 AR060209 - NIAMS NIH HHS; T32 HD043730 - NICHD NIH HHS; R00 HL098453 - NHLBI NIH HHS; R00HL098453 - NHLBI NIH HHS; R01AR060209 - NIAMS NIH HHS; R01AR060217 - NIAMS NIH HH

    Inhibition of Melanogenesis by the Pyridinyl Imidazole Class of Compounds: Possible Involvement of the Wnt/β-Catenin Signaling Pathway

    Get PDF
    While investigating the role of p38 MAPK in regulating melanogenesis, we found that pyridinyl imidazole inhibitors class compounds as well as the analog compound SB202474, which does not inhibit p38 MAPK, suppressed both α-MSH-induced melanogenesis and spontaneous melanin synthesis. In this study, we demonstrated that the inhibitory activity of the pyridinyl imidazoles correlates with inhibition of the canonical Wnt/β-catenin pathway activity. Imidazole-treated cells showed a reduction in the level of Tcf/Lef target genes involved in the β-catenin signaling network, including ubiquitous genes such as Axin2, Lef1, and Wisp1 as well as cell lineage-restricted genes such as microphthalmia-associated transcription factor and dopachrome tautomerase. Although over-expression of the Wnt signaling pathway effector β-catenin slightly restored the melanogenic program, the lack of complete reversion suggested that the imidazoles interfered with β-catenin-dependent transcriptional activity rather than with β-catenin expression. Accordingly, we did not observe any significant change in β-catenin protein expression. The independence of p38 MAPK activity from the repression of Wnt/β-catenin signaling pathway was confirmed by small interfering RNA knockdown of p38 MAPK expression, which by contrast, stimulated β-catenin-driven gene expression. Our data demonstrate that the small molecule pyridinyl imidazoles possess two distinct and opposite mechanisms that modulate β-catenin dependent transcription: a p38 inhibition-dependent effect that stimulates the Wnt pathway by increasing β-catenin protein expression and an off-target mechanism that inhibits the pathway by repressing β-catenin protein functionality. The p38-independent effect seems to be dominant and, at least in B16-F0 cells, results in a strong block of the Wnt/β-catenin signaling pathway

    Resveratrol Enhances Antitumor Activity of TRAIL in Prostate Cancer Xenografts through Activation of FOXO Transcription Factor

    Get PDF
    Resveratrol (3, 4', 5 tri-hydroxystilbene), a naturally occurring polyphenol, exhibits anti-inflammatory, antioxidant, cardioprotective and antitumor activities. We have recently shown that resveratrol can enhance the apoptosis-inducing potential of TRAIL in prostate cancer cells through multiple mechanisms in vitro. Therefore, the present study was designed to validate whether resveratrol can enhance the apoptosis-inducing potential of TRAIL in a xenograft model of prostate cancer.Resveratrol and TRAIL alone inhibited growth of PC-3 xenografts in nude mice by inhibiting tumor cell proliferation (PCNA and Ki67 staining) and inducing apoptosis (TUNEL staining). The combination of resveratrol and TRAIL was more effective in inhibiting tumor growth than single agent alone. In xenografted tumors, resveratrol upregulated the expressions of TRAIL-R1/DR4, TRAIL-R2/DR5, Bax and p27(/KIP1), and inhibited the expression of Bcl-2 and cyclin D1. Treatment of mice with resveratrol and TRAIL alone inhibited angiogenesis (as demonstrated by reduced number of blood vessels, and VEGF and VEGFR2 positive cells) and markers of metastasis (MMP-2 and MMP-9). The combination of resveratrol with TRAIL further inhibited number of blood vessels in tumors, and circulating endothelial growth factor receptor 2-positive endothelial cells than single agent alone. Furthermore, resveratrol inhibited the cytoplasmic phosphorylation of FKHRL1 resulting in its enhanced activation as demonstrated by increased DNA binding activity.These data suggest that resveratrol can enhance the apoptosis-inducing potential of TRAIL by activating FKHRL1 and its target genes. The ability of resveratrol to inhibit tumor growth, metastasis and angiogenesis, and enhance the therapeutic potential of TRAIL suggests that resveratrol alone or in combination with TRAIL can be used for the management of prostate cancer
    corecore