315 research outputs found
Four small puzzles that Rosetta doesn't solve
A complete macromolecule modeling package must be able to solve the simplest
structure prediction problems. Despite recent successes in high resolution
structure modeling and design, the Rosetta software suite fares poorly on
deceptively small protein and RNA puzzles, some as small as four residues. To
illustrate these problems, this manuscript presents extensive Rosetta results
for four well-defined test cases: the 20-residue mini-protein Trp cage, an even
smaller disulfide-stabilized conotoxin, the reactive loop of a serine protease
inhibitor, and a UUCG RNA tetraloop. In contrast to previous Rosetta studies,
several lines of evidence indicate that conformational sampling is not the
major bottleneck in modeling these small systems. Instead, approximations and
omissions in the Rosetta all-atom energy function currently preclude
discriminating experimentally observed conformations from de novo models at
atomic resolution. These molecular "puzzles" should serve as useful model
systems for developers wishing to make foundational improvements to this
powerful modeling suite.Comment: Published in PLoS One as a manuscript for the RosettaCon 2010 Special
  Collectio
Potentials of Mean Force for Protein Structure Prediction Vindicated, Formalized and Generalized
Understanding protein structure is of crucial importance in science, medicine
and biotechnology. For about two decades, knowledge based potentials based on
pairwise distances -- so-called "potentials of mean force" (PMFs) -- have been
center stage in the prediction and design of protein structure and the
simulation of protein folding. However, the validity, scope and limitations of
these potentials are still vigorously debated and disputed, and the optimal
choice of the reference state -- a necessary component of these potentials --
is an unsolved problem. PMFs are loosely justified by analogy to the reversible
work theorem in statistical physics, or by a statistical argument based on a
likelihood function. Both justifications are insightful but leave many
questions unanswered. Here, we show for the first time that PMFs can be seen as
approximations to quantities that do have a rigorous probabilistic
justification: they naturally arise when probability distributions over
different features of proteins need to be combined. We call these quantities
reference ratio distributions deriving from the application of the reference
ratio method. This new view is not only of theoretical relevance, but leads to
many insights that are of direct practical use: the reference state is uniquely
defined and does not require external physical insights; the approach can be
generalized beyond pairwise distances to arbitrary features of protein
structure; and it becomes clear for which purposes the use of these quantities
is justified. We illustrate these insights with two applications, involving the
radius of gyration and hydrogen bonding. In the latter case, we also show how
the reference ratio method can be iteratively applied to sculpt an energy
funnel. Our results considerably increase the understanding and scope of energy
functions derived from known biomolecular structures
Calibur: a tool for clustering large numbers of protein decoys
<p>Abstract</p> <p>Background</p> <p>Ab initio protein structure prediction methods generate numerous structural candidates, which are referred to as decoys. The decoy with the most number of neighbors of up to a threshold distance is typically identified as the most representative decoy. However, the clustering of decoys needed for this criterion involves computations with runtimes that are at best quadratic in the number of decoys. As a result currently there is no tool that is designed to exactly cluster very large numbers of decoys, thus creating a bottleneck in the analysis.</p> <p>Results</p> <p>Using three strategies aimed at enhancing performance (proximate decoys organization, preliminary screening via lower and upper bounds, outliers filtering) we designed and implemented a software tool for clustering decoys called Calibur. We show empirical results indicating the effectiveness of each of the strategies employed. The strategies are further fine-tuned according to their effectiveness.</p> <p>Calibur demonstrated the ability to scale well with respect to increases in the number of decoys. For a sample size of approximately 30 thousand decoys, Calibur completed the analysis in one third of the time required when the strategies are not used.</p> <p>For practical use Calibur is able to automatically discover from the input decoys a suitable threshold distance for clustering. Several methods for this discovery are implemented in Calibur, where by default a very fast one is used. Using the default method Calibur reported relatively good decoys in our tests.</p> <p>Conclusions</p> <p>Calibur's ability to handle very large protein decoy sets makes it a useful tool for clustering decoys in ab initio protein structure prediction. As the number of decoys generated in these methods increases, we believe Calibur will come in important for progress in the field.</p
Pairwise covariance adds little to secondary structure prediction but improves the prediction of non-canonical local structure
<p>Abstract</p> <p>Background</p> <p>Amino acid sequence probability distributions, or profiles, have been used successfully to predict secondary structure and local structure in proteins. Profile models assume the statistical independence of each position in the sequence, but the energetics of protein folding is better captured in a scoring function that is based on pairwise interactions, like a force field.</p> <p>Results</p> <p>I-sites motifs are short sequence/structure motifs that populate the protein structure database due to energy-driven convergent evolution. Here we show that a pairwise covariant sequence model does not predict alpha helix or beta strand significantly better overall than a profile-based model, but it does improve the prediction of certain loop motifs. The finding is best explained by considering secondary structure profiles as multivariant, all-or-none models, which subsume covariant models. Pairwise covariance is nonetheless present and energetically rational. Examples of negative design are present, where the covariances disfavor non-native structures.</p> <p>Conclusion</p> <p>Measured pairwise covariances are shown to be statistically robust in cross-validation tests, as long as the amino acid alphabet is reduced to nine classes. An updated I-sites local structure motif library that provides sequence covariance information for all types of local structure in globular proteins and a web server for local structure prediction are available at <url>http://www.bioinfo.rpi.edu/bystrc/hmmstr/server.php</url>.</p
Racism as a determinant of health: a systematic review and meta-analysis
Despite a growing body of epidemiological evidence in recent years documenting the health impacts of racism, the cumulative evidence base has yet to be synthesized in a comprehensive meta-analysis focused specifically on racism as a determinant of health. This meta-analysis reviewed the literature focusing on the relationship between reported racism and mental and physical health outcomes. Data from 293 studies reported in 333 articles published between 1983 and 2013, and conducted predominately in the U.S., were analysed using random effects models and mean weighted effect sizes. Racism was associated with poorer mental health (negative mental health: r = -.23, 95% CI [-.24,-.21], k = 227; positive mental health: r = -.13, 95% CI [-.16,-.10], k = 113), including depression, anxiety, psychological stress and various other outcomes. Racism was also associated with poorer general health (r = -.13 (95% CI [-.18,-.09], k = 30), and poorer physical health (r = -.09, 95% CI [-.12,-.06], k = 50). Moderation effects were found for some outcomes with regard to study and exposure characteristics. Effect sizes of racism on mental health were stronger in cross-sectional compared with longitudinal data and in non-representative samples compared with representative samples. Age, sex, birthplace and education level did not moderate the effects of racism on health. Ethnicity significantly moderated the effect of racism on negative mental health and physical health: the association between racism and negative mental health was significantly stronger for Asian American and Latino(a) American participants compared with African American participants, and the association between racism and physical health was significantly stronger for Latino(a) American participants compared with African American participants.<br /
LoCo: a novel main chain scoring function for protein structure prediction based on local coordinates
Calcium-fortified beverage supplementation on body composition in postmenopausal women
BACKGROUND: We investigated the effects of a calcium-fortified beverage supplemented over 12 months on body composition in postmenopausal women (n = 37, age = 48–75 y). METHODS: Body composition (total-body percent fat, %Fat(TB); abdominal percent fat, %Fat(AB)) was measured with dual energy x-ray absorptiometry. After baseline assessments, subjects were randomly assigned to a free-living control group (CTL) or the supplement group (1,125 mg Ca(++)/d, CAL). Dietary intake was assessed with 3-day diet records taken at baseline and 12 months (POST). Physical activity was measured using the Yale Physical Activity Survey. RESULTS: At 12 months, the dietary calcium to protein ratio in the CAL group (32.3 ± 15.6 mg/g) was greater than the CTL group (15.2 ± 7.5 mg/g). There were no differences from baseline to POST between groups for changes in body weight (CAL = 0.1 ± 3.0 kg; CTL = 0.0 ± 2.9 kg), %Fat(TB )(CAL = 0.0 ± 2.4%; CTL = 0.5 ± 5.4%), %Fat(AB )(CAL = -0.4 ± 8.7%; CTL = 0.6 ± 8.7%), or fat mass (CAL = 1.3 ± 2.6 kg; CTL = 1.3 ± 2.7 kg). CONCLUSION: These results indicate that increasing the calcium to protein ratio over two-fold by consuming a calcium-fortified beverage for 12 months did not decrease body weight, body fat, or abdominal fat composition in postmenopausal women
A Novel Side-Chain Orientation Dependent Potential Derived from Random-Walk Reference State for Protein Fold Selection and Structure Prediction
An accurate potential function is essential to attack protein folding and structure prediction problems. The key to developing efficient knowledge-based potential functions is to design reference states that can appropriately counteract generic interactions. The reference states of many knowledge-based distance-dependent atomic potential functions were derived from non-interacting particles such as ideal gas, however, which ignored the inherent sequence connectivity and entropic elasticity of proteins.We developed a new pair-wise distance-dependent, atomic statistical potential function (RW), using an ideal random-walk chain as reference state, which was optimized on CASP models and then benchmarked on nine structural decoy sets. Second, we incorporated a new side-chain orientation-dependent energy term into RW (RWplus) and found that the side-chain packing orientation specificity can further improve the decoy recognition ability of the statistical potential.RW and RWplus demonstrate a significantly better ability than the best performing pair-wise distance-dependent atomic potential functions in both native and near-native model selections. It has higher energy-RMSD and energy-TM-score correlations compared with other potentials of the same type in real-life structure assembly decoys. When benchmarked with a comprehensive list of publicly available potentials, RW and RWplus shows comparable performance to the state-of-the-art scoring functions, including those combining terms from multiple resources. These data demonstrate the usefulness of random-walk chain as reference states which correctly account for sequence connectivity and entropic elasticity of proteins. It shows potential usefulness in structure recognition and protein folding simulations. The RW and RWplus potentials, as well as the newly generated I-TASSER decoys, are freely available in http://zhanglab.ccmb.med.umich.edu/RW
Inhibition of cholesterol recycling impairs cellular PrPSc propagation
The infectious agent in prion diseases consists of an aberrantly folded isoform of the cellular prion protein (PrPc), termed PrPSc, which accumulates in brains of affected individuals. Studies on prion-infected cultured cells indicate that cellular cholesterol homeostasis influences PrPSc propagation. Here, we demonstrate that the cellular PrPSc content decreases upon accumulation of cholesterol in late endosomes, as induced by NPC-1 knock-down or treatment with U18666A. PrPc trafficking, lipid raft association, and membrane turnover are not significantly altered by such treatments. Cellular PrPSc formation is not impaired, suggesting that PrPSc degradation is increased by intracellular cholesterol accumulation. Interestingly, PrPSc propagation in U18666A-treated cells was partially restored by overexpression of rab 9, which causes redistribution of cholesterol and possibly of PrPSc to the trans-Golgi network. Surprisingly, rab 9 overexpression itself reduced cellular PrPSc content, indicating that PrPSc production is highly sensitive to alterations in dynamics of vesicle trafficking
Using neural networks and evolutionary information in decoy discrimination for protein tertiary structure prediction
Background: We present a novel method of protein fold decoy discrimination using machine learning, more specifically using neural networks. Here, decoy discrimination is represented as a machine learning problem, where neural networks are used to learn the native-like features of protein structures using a set of positive and negative training examples. A set of native protein structures provides the positive training examples, while negative training examples are simulated decoy structures obtained by reversing the sequences of native structures. Various features are extracted from the training dataset of positive and negative examples and used as inputs to the neural networks.Results: Results have shown that the best performing neural network is the one that uses input information comprising of PSI-BLAST [1] profiles of residue pairs, pairwise distance and the relative solvent accessibilities of the residues. This neural network is the best among all methods tested in discriminating the native structure from a set of decoys for all decoy datasets tested. Conclusion: This method is demonstrated to be viable, and furthermore evolutionary information is successfully used in the neural networks to improve decoy discrimination
- …
