73 research outputs found

    Search for Kaluza-Klein Graviton Emission in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy Signature

    Get PDF
    We report on a search for direct Kaluza-Klein graviton production in a data sample of 84 pb1{pb}^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab. We investigate the final state of large missing transverse energy and one or two high energy jets. We compare the data with the predictions from a 3+1+n3+1+n-dimensional Kaluza-Klein scenario in which gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for nn=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71 TeV, respectively.Comment: Submitted to PRL, 7 pages 4 figures/Revision includes 5 figure

    Measurement of the average time-integrated mixing probability of b-flavored hadrons produced at the Tevatron

    Get PDF
    We have measured the number of like-sign (LS) and opposite-sign (OS) lepton pairs arising from double semileptonic decays of bb and bˉ\bar{b}-hadrons, pair-produced at the Fermilab Tevatron collider. The data samples were collected with the Collider Detector at Fermilab (CDF) during the 1992-1995 collider run by triggering on the existence of μμ\mu \mu and eμe \mu candidates in an event. The observed ratio of LS to OS dileptons leads to a measurement of the average time-integrated mixing probability of all produced bb-flavored hadrons which decay weakly, χˉ=0.152±0.007\bar{\chi} = 0.152 \pm 0.007 (stat.) ±0.011\pm 0.011 (syst.), that is significantly larger than the world average χˉ=0.118±0.005\bar{\chi} = 0.118 \pm 0.005.Comment: 47 pages, 10 figures, 15 tables Submitted to Phys. Rev.

    Maternal smoking during pregnancy and birth defects in children: a systematic review with meta-analysis

    Full text link

    Angiogenic capacity of endothelial cells in islets of Langerhans.

    No full text
    Transplantation of pancreatic islets reconstitutes glucose homeostasis in diabetes mellitus. Before transplantation, islets are disrupted from the surrounding blood vessels by the isolation procedure, with the grafted tissue being subject to ischemic damage. The survival of transplanted islets is assumed to depend on effective revascularization. Perfusion studies suggest that newly formed microvessels supplying the graft with nutrients are exclusively rebuilt by the host. It is generally not known whether isolated islets contain endothelial cells (EC), which potentially participate in the revascularization process. Therefore, we tried to detect immature EC in isolated islets by transformation with polyoma middle T antigen. Endothelioma cells were generated, implicating the presence of de-differentiated EC within isolated islets. When embedded in a fibrin gel, the islets developed cellular cords consisting of EC, whereas FGF-2 and VEGF stimulated the formation of cord-like structures. Furthermore, we studied the presence of donor EC in islet grafts by using transgenic mice with an EC lineage-specific promotor-LacZ reporter construct (Tie-2LacZ). Following islet transplantation, Tie-2LacZ-positive EC of both donor and recipient were identified in the vicinity of or within the graft up to 3 wk after transplantation. In conclusion, EC and/or their progenitors with angiogenic capacity reside within isolated islets of different species, and their proliferative potential can be stimulated by various inducers. These graft-related endothelia persist after islet transplantation and are integrated within newly formed microvessels
    corecore