39 research outputs found

    Comparison of Whole Blood and Peripheral Blood Mononuclear Cell Gene Expression for Evaluation of the Perioperative Inflammatory Response in Patients with Advanced Heart Failure

    Get PDF
    Background: Heart failure (HF) prevalence is increasing in the United States. Mechanical Circulatory Support (MCS) therapy is an option for Advanced HF (AdHF) patients. Perioperatively, multiorgan dysfunction (MOD) is linked to the effects of device implantation, augmented by preexisting HF. Early recognition of MOD allows for better diagnosis, treatment, and risk prediction. Gene expression profiling (GEP) was used to evaluate clinical phenotypes of peripheral blood mononuclear cells (PBMC) transcriptomes obtained from patients’ blood samples. Whole blood (WB) samples are clinically more feasible, but their performance in comparison to PBMC samples has not been determined. Methods: We collected blood samples from 31 HF patients (57¡15 years old) undergoing cardiothoracic surgery and 7 healthy age-matched controls, between 2010 and 2011, at a single institution. WB and PBMC samples were collected at a single timepoint postoperatively (median day 8 postoperatively) (25–75% IQR 7–14 days) and subjected to Illumina single color Human BeadChip HT12 v4 whole genome expression array analysis. The Sequential Organ Failure Assessment (SOFA) score was used to characterize the severity of MOD into low (# 4 points), intermediate (5–11), and high ($ 12) risk categories correlating with GEP. Results: Results indicate that the direction of change in GEP of individuals with MOD as compared to controls is similar when determined from PBMC versus WB. The main enriched terms by Gene Ontology (GO) analysis included those involved in the inflammatory response, apoptosis, and other stress response related pathways. The data revealed 35 significant GO categories and 26 pathways overlapping between PBMC and WB. Additionally, class prediction using machine learning tools demonstrated that the subset of significant genes shared by PBMC and WB are sufficient to train as a predictor separating the SOFA groups. Conclusion: GEP analysis of WB has the potential to become a clinical tool for immune-monitoring in patients with MO

    Gene Expression during the Generation and Activation of Mouse Neutrophils: Implication of Novel Functional and Regulatory Pathways

    Get PDF
    As part of the Immunological Genome Project (ImmGen), gene expression was determined in unstimulated (circulating) mouse neutrophils and three populations of neutrophils activated in vivo, with comparison among these populations and to other leukocytes. Activation conditions included serum-transfer arthritis (mediated by immune complexes), thioglycollate-induced peritonitis, and uric acid-induced peritonitis. Neutrophils expressed fewer genes than any other leukocyte population studied in ImmGen, and down-regulation of genes related to translation was particularly striking. However, genes with expression relatively specific to neutrophils were also identified, particularly three genes of unknown function: Stfa2l1, Mrgpr2a and Mrgpr2b. Comparison of genes up-regulated in activated neutrophils led to several novel findings: increased expression of genes related to synthesis and use of glutathione and of genes related to uptake and metabolism of modified lipoproteins, particularly in neutrophils elicited by thioglycollate; increased expression of genes for transcription factors in the Nr4a family, only in neutrophils elicited by serum-transfer arthritis; and increased expression of genes important in synthesis of prostaglandins and response to leukotrienes, particularly in neutrophils elicited by uric acid. Up-regulation of genes related to apoptosis, response to microbial products, NFkB family members and their regulators, and MHC class II expression was also seen, in agreement with previous studies. A regulatory model developed from the ImmGen data was used to infer regulatory genes involved in the changes in gene expression during neutrophil activation. Among 64, mostly novel, regulatory genes predicted to influence these changes in gene expression, Irf5 was shown to be important for optimal secretion of IL-10, IP-10, MIP-1α, MIP-1β, and TNF-α by mouse neutrophils in vitro after stimulation through TLR9. This data-set and its analysis using the ImmGen regulatory model provide a basis for additional hypothesis-based research on the importance of changes in gene expression in neutrophils in different conditions

    Symmetric multivariate and related distributions

    No full text

    Moments of the product and ratio of two correlated chi-square variables

    Get PDF
    Bivariate chi-square distribution, Moments, Product of correlated chi-square variables, Ratio of correlated chi-square variables, 62E15, 60E05, 60E10,

    Thermocapillarity

    No full text

    IFN-gamma-Stimulated Neutrophils Suppress Lymphocyte Proliferation through Expression of PD-L1

    Get PDF
    Contains fulltext : 119302.pdf (publisher's version ) (Open Access)During systemic inflammation different neutrophil subsets are mobilized to the peripheral blood. These neutrophil subsets can be distinguished from normal circulating neutrophils (CD16(bright)/CD62L(bright)), based on either an immature CD16(dim)/CD62L(bright) or a CD16(bright)/CD62L(dim) phenotype. Interestingly, the latter neutrophil subset is known to suppress lymphocyte proliferation ex vivo, but how neutrophils become suppressive is unknown. We performed transcriptome analysis on the different neutrophil subsets to identify changes in mRNA expression that are relevant for their functions. Neutrophil subsets were isolated by fluorescence-activated cell sorting from blood of healthy volunteers that were administered a single dose of lipopolysaccharide (2 ng/kg i.v.) and the transcriptome was determined by microarray analysis. Interestingly, the CD16(bright)/CD62L(dim) suppressive neutrophils showed an interferon-induced transcriptome profile. More importantly, IFN-gamma, but not IFN-alpha or IFN-beta stimulated neutrophils, acquired the capacity to suppress lymphocyte proliferation through the expression of programmed death ligand 1 (PD-L1). These data demonstrate that IFN-gamma-induced expression of PD-L1 on neutrophils enables suppression of lymphocyte proliferation. Specific stimulation of neutrophils present at the inflammatory sites might therefore have a pivotal role in regulating lymphocyte-mediated inflammation and autoimmune disease

    Development of latent fingerprints on non-porous surfaces recovered from fresh and sea water

    No full text
    Abstract Background Criminal offenders have a fundamental goal not to leave any traces at the crime scene. Some may suppose that items recovered underwater will have no forensic value, therefore, they try to destroy the traces by throwing items in water. These traces are subjected to the destructive environmental effects. This can represent a challenge for forensic experts investigating fingerprints. Methods The present study was conducted to determine the optimal method for latent fingerprints development on dry non-porous surfaces submerged in aquatic environments at different time interval. The quality of the developed fingerprints depending on the used method was assessed. In addition, two factors were analyzed in this study; the effects of the nature of aquatic environment and the length of submerged time. Therefore, latent fingerprints were deposited on metallic, plastic and glass objects and submerged in fresh and sea water for 1, 2, and 10 days. After recovery, the items were processed by black powder, small particle reagent and cyanoacrylate fuming and the prints were examined. Each print was evaluated according to fingerprint quality assessment scale. Results Cyanoacrylate developed latent prints found to have the highest mean visibility score after submersion in fresh and sea water for 1, 2 and 10 days. Mean visibility score of prints developed showed significant decline after 10 days of submersion. Prints submerged in fresh water showed significantly higher mean visibility score than those submerged in sea water using various methods of development and in all time intervals. Conclusion The study demonstrated that it is possible to recover latent prints submerged in water on different studied dry non porous surfaces with the best visualization method using cyanoacrylate either in fresh or sea water. The duration of submersion affects the quality of fingerprints developed; the longer the duration, the worse the quality is. In addition, this study has revealed that the exposure to high salinity i.e. sea water has more damaging influence on the quality of detected fingerprints. It is concluded that any piece of evidence recovered from underwater should be tested for prints, no matter the amount of time spent beneath the surface
    corecore