69 research outputs found

    Default-Mode-Like Network Activation in Awake Rodents

    Get PDF
    During wakefulness and in absence of performing tasks or sensory processing, the default-mode network (DMN), an intrinsic central nervous system (CNS) network, is in an active state. Non-human primate and human CNS imaging studies have identified the DMN in these two species. Clinical imaging studies have shown that the pattern of activity within the DMN is often modulated in various disease states (e.g., Alzheimer's, schizophrenia or chronic pain). However, whether the DMN exists in awake rodents has not been characterized. The current data provides evidence that awake rodents also possess ‘DMN-like’ functional connectivity, but only subsequent to habituation to what is initially a novel magnetic resonance imaging (MRI) environment as well as physical restraint. Specifically, the habituation process spanned across four separate scanning sessions (Day 2, 4, 6 and 8). At Day 8, significant (p<0.05) functional connectivity was observed amongst structures such as the anterior cingulate (seed region), retrosplenial, parietal, and hippocampal cortices. Prior to habituation (Day 2), functional connectivity was only detected (p<0.05) amongst CNS structures known to mediate anxiety (i.e., anterior cingulate (seed region), posterior hypothalamic area, amygdala and parabracial nucleus). In relating functional connectivity between cingulate-default-mode and cingulate-anxiety structures across Days 2-8, a significant inverse relationship (r = −0.65, p = 0.0004) was observed between these two functional interactions such that increased cingulate-DMN connectivity corresponded to decreased cingulate anxiety network connectivity. This investigation demonstrates that the cingulate is an important component of both the rodent DMN-like and anxiety networks

    Current and Future Drug Targets in Weight Management

    Get PDF
    Obesity will continue to be one of the leading causes of chronic disease unless the ongoing rise in the prevalence of this condition is reversed. Accumulating morbidity figures and a shortage of effective drugs have generated substantial research activity with several molecular targets being investigated. However, pharmacological modulation of body weight is extremely complex, since it is essentially a battle against one of the strongest human instincts and highly efficient mechanisms of energy uptake and storage. This review provides an overview of the different molecular strategies intended to lower body weight or adipose tissue mass. Weight-loss drugs in development include molecules intended to reduce the absorption of lipids from the GI tract, various ways to limit food intake, and compounds that increase energy expenditure or reduce adipose tissue size. A number of new preparations, including combinations of the existing drugs topiramate plus phentermine, bupropion plus naltrexone, and the selective 5-HT2C agonist lorcaserin have recently been filed for approval. Behind these leading candidates are several other potentially promising compounds and combinations currently undergoing phase II and III testing. Some interesting targets further on the horizon are also discussed

    ELECtric Tibial nerve stimulation to Reduce Incontinence in Care homes: protocol for the ELECTRIC randomised trial

    Get PDF
    Background Urinary incontinence (UI) is highly prevalent in nursing and residential care homes (CH) and profoundly impacts on residents’ dignity and quality of life. Care homes predominantly use absorbent pads to contain UI rather than actively treat the condition. Transcutaneous posterior tibial nerve stimulation (TPTNS) is a non-invasive, safe, low-cost intervention with demonstrated effectiveness for reducing UI in adults. However, the effectiveness of TPTNS to treat UI in older adults living in care homes is not known. The ELECTRIC Trial aims to establish if a programme of TPTNS is a clinically effective treatment for UI in care home residents and investigate the associated costs and consequences. Methods This is a pragmatic, multicentre, placebo controlled randomised parallel group trial comparing effectiveness of TPTNS (target n=250) with sham stimulation (target n=250) in reducing volume of UI in CH residents. CH residents (men and women) with self- or staff- reported UI of more than once per week are eligible to take part, including those with cognitive impairment. Outcomes will be measured at 6, 12 and 18 weeks post randomisation using the following measures: 24-hour pad weight tests (PWT), post void residual urine (bladder scans), Patient Perception of Bladder Condition (PPBC), Minnesota Toileting Skills Questionnaire (MTSQ) and Dementia Quality of Life (DEMQOL). Economic evaluation based on a bespoke Resource Use Questionnaire will assess the costs of providing a programme of TPTNS. A concurrent process evaluation will investigate fidelity to the intervention and influencing factors and qualitative interviews will explore the experiences of TPTNS from the perspective of CH residents, family members, CH staff and managers. Discussion TPTNS is a non-invasive intervention that has demonstrated effectiveness in reducing UI in adults. The ELECTRIC Trial will involve CH staff delivering TPTNS to residents and establish whether TPTNS is more effective than sham stimulation for reducing the volume of UI in CH residents. Should TPTNS be shown to be an effective and acceptable treatment for UI in older adults in CHs, it will provide a safe, low-cost and dignified alternative to the current standard approach of containment and medication. Trial registration Clinical Trials.gov. NCT03248362. Registered on 14/08/2017. https://clinicaltrials.gov/ ISRCTN, ISRCTN 98415244. Registered on 25/04/2018. https://www.isrctn.com

    Selection of sucrose concentration depends on the effort required to obtain it: studies using tetrabenazine, D<sub>1</sub>, D<sub>2</sub>, and D<sub>3</sub> receptor antagonists

    No full text
    RationaleLow doses of dopamine (DA) antagonists and accumbens DA depletions reduce food-reinforced instrumental behavior but do not impair primary food motivation, causing animals to reallocate behavior away from food-reinforced tasks with high response requirements and select less effortful alternatives. However, it is uncertain if this same pattern of effects would occur if sucrose was used as the reinforcer. Objectives These experiments studied the impact of DA depletion and antagonism on performance of an effort-related choice task using sucrose as the reinforcer, as well as sucrose consumption, preference, and taste reactivity tests. Methods The effects of DA manipulations were assessed using a task in which rats chose between lever pressing on a fixed ratio 7 schedule for 5.0 % sucrose versus freely consuming a less concentrated solution (0.3 %). Results The DA depleting agent tetrabenazine shifted effort-related choice, decreasing lever pressing for 5.0 % sucrose but increasing intake of the concurrently available 0.3 % sucrose. Tetrabenazine did not affect sucrose appetitive taste reactivity, or sucrose consumption or preference, in free consumption tests. The D1 antagonist ecopipam and the D2 antagonist haloperidol also shifted choice behavior at doses that did not alter sucrose consumption or preference. In contrast, sucrose pre-exposure reduced consumption across all conditions. D3 antagonism had no effects. Conclusions D1 and D2 receptor blockade and DA depletion reduce the tendency to work for sucrose under conditions that leave fundamental aspects of sucrose motivation (intake, preference, hedonic reactivity) intact. These findings have implications for studies employing sucrose intake or preference in animal models of depression
    corecore