11 research outputs found

    A first record of Glyphesis taoplesius (Linyphiidae, Araneae) from Slovakia

    Get PDF
    This paper presents new data, characteristic features, standard body measurements and illustrations of the rare European linyphiid spider Glyphesis taoplesius Wunderlich, 1969; which is recorded here for the first time in Slovakia. The species was found with high abundance in pitfall traps exposed in a floodplain forest near a water reservoir in the lowland Podunajská rovina

    Records of new or rarely encountered arachnids in Slovakia

    Get PDF
    Im Gesamtmaterial von Spinnentier-Aufsammlungen aus der Slowakei haben wir eine Reihe bemerkenswerter Pseudoskorpion- und Webspinnenarten festgestellt, über die nachfolgend kurz berichtet werden soll

    Morphometric variation of Abax parallelepipedus (Piller & Mitterpacher, 1783), (Coleoptera: Carabidae) in rural – urban areas

    Get PDF
    Article Details: Received: 2020-10-14 | Accepted: 2020-02-20 | Available online: 2021-03-31https://doi.org/10.15414/afz.2021.24.01.87-93In the 2015 - 2017 period, we evaluated the morphometric variation of traits and Ellipsoid biovolume (EV) in 478 individuals (226 ♂, 252 ♀) of Abax parallelepipedus (Piller and Mitterpacher, 1783) in forest habitats and riparian stands. We confirmed, lower average of EV values in the rural compared to the urban areas (Kruskal-Wallis test – p = 0.037). The Friedman test showed a shortening of the morphometric features length (p = 0.030), height (p = 0.016), width (p = 0.011) and EV (p = 0.01) in the urban-rural direction. Spatial modeling of dispersion confirmed a significant change between 2016–2017. These changes may be affected by the food supply.Key words: ground beetles, morphometrics, population variability, SlovakiReferencesAngilletta, J. and Dunham, A. E. (2003). The temperaturesize rule in ectotherms: simple evolutionary explanations may not be general. American Naturalist, 162, 332–342Barndt, S. et al. (1991). Die Laufkäferfauna von Berlin (West) – mit Kennzeichnung und Auswertung der verschollenen Arten (RoteListe, 3. Fassung). Rote Listen der Gefahrdeten Pflanzen und Tier in Berlin. Landschaftsentwicklung und Umweltforschung, 6, 243–275Bezděk, A. (2001). Význam střevlíků (Carabidae) jako indikátorů ekologických změn. Aktuality Šumavského výskumu, pp. 176–177.Braun, S. D. et. Al. (2004). Shifting average body size during regeneration after pollution – a case study using ground beetle assemblages. Ecological Entomology, 29, 543–554.Brygadyrenko, V. V. and Reshetniak Y. D. (2014). Morphological variability among populations of Harpalus rufipes (Coleoptera, Carabidae): What is more important – the mean values or statistical peculiarities of distribution in the population? Folia Oecologica, 41, 109–133.Dial, K.P. et. al (2008). Allometry of behavior. Trends in Ecology and Evolution, 23, 394–401.Demková, L. et. al (2018). The Risk Elements Biomonitoring in the Ambient Air of an Underground Parking Lot. Polish Journal of Natural Science, 33, 545–559.Gordienko, T. A. and Sukhodolskaya, R. A. (2011) Soil biota as the indicator of suburban forests state In Gazizullin A. Kh. and Martinyuk A. A. (eds.): Forestry of Russia: state, problems, perspectives of innovations. Papers celebrating the 85th Anniversary of the East-European forest experimental station, pp. 44–50.Heydeman, B. (1995). Carabiden de Kulturfelder okologische Indikatoren. Ber. 7. Wandervers. Dtsch. In Entomol. Berlin (1954), pp. 172–182. In Anderson, O. (eds.). 2005. Die Carabiden-Fauna auf unterschiedlich intensiv bewirtschafteten Obstanbauflachen im Alten Land bei Hamburg. Dissertationsschrift, Angefertigt am Fachbereich Umweltwissenschaften der Universität Lüneburg. 112 p.Huidu, M. (2011). Comparative study concerning the Carabidae fauna from the beech forest and the nearby meadow from Bistrita Gorges (Buila-Vamturarita National Park). South Western Journal of Horticulture, Biology and Environment, (2), 95–105.Huidu, M. (2012). Comparative data concerning the carabid populations dynamics in a mixed tree forest (Buila-Vamturarita National Park). Studia Universitatis Vasile Goldis Seria Stiintele Vietii (Life Sciences Serries), (22), 443–450.Hůrka, K. (1996). Carabidae of the Czech and Slovak Republics. Zlín: Kabourek.Ivanič Porhajašová, J. et. al. (2018a). Long-Term Developments and Biodiversity 399 in Carabid and Staphylinid (Coleoptera: Carabidae and Staphylinidae) Fauna during the Application of 400 Organic Fertilizers under Agroecosystem Conditions. Polish Journal of Environmental Studies, 27, 2229–2401.Ivanič Porhajašová, J. (2018b). Biodiversity and spatial structure of Carabidae (Coleoptera) populations in the conditions of different habitat types. Nitra: SUA (Slovakia).Kalivoda, H. et al. (2011). Influence of the landscape structure on the butterfly (Lepidoptera, Hesperioidea and Papilionoidea) and bird (Aves) taxocoenoses in Vel‘ké Leváre (SW Slovakia). Ekologia, 29(4), 337–359.Lövei, L. G. and Magura, T. (2006). Body size changes in ground beetle assemblages – are analysis of Braunet al. (2004)’ data. Ecological Entomology, 31, 411–414.Magura, T. et. al. (2006). Body size inequality of carabids along an urbanisation gradient. Basic and Applied Ecology, 7, 472–482.Naidenko, V. V. and Grechkanev, O. M. (2002). Biota elements state as the indicator of natural systems disturbance in oil production. Ecology, 1, 67–69.Niemelä, J. and Kotze, D. J. (2009) Carabid beetle assemblages along urban to rural gradients: a review. Landscape and Urban Planning, 92, 65–71.Niemelä, J. et. al. (2002). Carabid beetle assemblages (Coleoptera, Carabidae) across urban-rural gradients: an international comparison. Landscape Ecology, 17, 387–401.Novák, K. et. al. (1969). Metódy sběru a preparace hmyzu. Praha: Academia. Microsoft SQL Server (2017). (RTM) – 14.0.1000.169 (X64) Aug 22 2017 17:04:49 Copyright (C) 2017 Microsoft Corporation Express Edition (64-bit) on Windows 10 Home 10.0 (Build 18362:).Oboňa, J. et. al. (2017). Invertebrates in overlooked aquatic ecosystem in the middle of the town. Periodicum Biologorum, 119(1), 47–54. DOI: 10.18054/pb.v119i1.4169.Oboňa, J. and Stašiov, S. (2018). Základy ekológie lesa. Prešov: Prešovská univerzita, 184 p.Oboňa, J. et. al. (2019). Aquatic invertebrates of the pluviotelmata in Sitnianska Lehôtka vicinity (Slovakia). Biodiversity & Environment, 11(1), 4–14.Rueffler, C. et. al. (2006). Disruptive selection and then what? Trends Ecol. Evol., 21, 238–245.Ružičková, H. et. al. (1996). Biotopy Slovenska. Príručka k mapovaniu a katalóg biotopov. (2nd rev. ed.). Bratislava: Ústav krajinnej ekológie Slovenska akadémie vied.Sukhodolskaya, R. A., (2011). Morphometric variation and sexual dimorphism in populations of Ground Beetle Carabus cancellatus (Coleoptera, Carabidae). In: Sabirov A. T. (ed): Current Aspects of Biodiversity Conservation and Natural Resource Use. Papers of Whole Russia Scientific Conference, pp. 105–121.Sukhodolskaya, R. A. and Saveliev, A. A. (2012). Environmental factors influence on morphometric variation and sexual dimorphism in Carabus cancellatus Ill. Journal of Applied Entomology, 3, 28–38.Sukhodolskaya, R. (2013). Intraspecific Body Size Variation In Ground Beetles (Coleoptera, Carabidae) Urban – Suburban – Rural – Natural Gradient. Acta Biol. Univ. Daugavp, 13, 121–128.Sukhodolskaya, R. A. and Saveliev, A. A. (2012). Environmental factors influence on morphometric variation and sexual dimorphism in Carabus cancellatus Ill. Journal of Applied Entomology, 3, 28–38.Sukhodolskaya, R. A. and Saveliev, A. A. (2014). Effects of Ecological Factors on SizeRelated Traits in the Ground Beetle Carabus granulatus L. (Coleoptera, Carabidae). Russian Journal of Ecology, 45, 369–375.Sukhodolskaya, R. A. and Saveliev, A. A. (2016). Body Size Variation of Ground Beetles (Coleoptera: Carabidae) in Latitudinal Gradient. Periodicum Biologorum, 118, 273–280.Szyszko, J. (1983). State of Carabidae (Col.) fauna in fresh pine forest and tentative valorisation of this environment. Warsaw: Agricultural University Press (Poland).STATSOFT, INC. (2004). Statistica Cz [Softwarový systém na anylýzu dat], verze 7. Www.StatSoft.Cz.Šustek, Z. (1987). Changes in body size structure of carabid community (Coleoptera, Carabidae) along an urbanisation gradient. Biológia, 42, 145–156.Ter Braak, C.J.F. and Šmilauer, P. (2012). Canoco reference manual and user‘s guide: software for ordination, version 5.0. Ithaca USA: Microcomputer Power.Timofeeva, G. A. and Savosin, N. I. (2009). Some aspects of fauna and population structure in Ground Beetles of Kemerovo and its suburbs. Saransk: Mordovia University Articles, pp. 69– 70 (Russia).Turin, H. (2000). De Nederlandse loopkevers: verspreiding enoecologie (Coleoptera: Carabidae). Nederlandse fauna, 3.Varga, L. and Holec, P. (2010). Effect of topdressing with nitrogen and boron on the yield and quality of rapeseed. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 58(5), 391–398.Vician, V. et al. (2018). Carabid communities (Coleoptera, Carabidae) in differently managed forage legume stands in the Podpoľanie region (Central Slovakia). Folia Oecologica, 45(2), 102–110.Wheeler, B. (1996). The role of nourishment in oogenesis. Annual Review of Entomology, 41, 407–431.Weller, B. and Ganzhorn, U. J. (2006). Carabid beetle community composition, body size, and fluctuating asymmetry along an urban-rural gradient. Bassic and Apllied Ecology, 5, 193–201.

    Molecular characterisation of three Ixodes (Pholeoixodes) species (Ixodida, Ixodidae) and the first record of Ixodes (Pholeoixodes) kaiseri from Slovakia

    Get PDF
    A study of ticks on wildlife was carried out in the area of Levice, Bratislava, Stupava, and Vrbovce (south-western Slovakia) during 2021 and 2022. Overall, 512 ticks were collected from 51 individuals of six wild mammalian species. Eight tick species were identified, namely Dermacentor reticulatus, D. marginatus, Haemaphysalis inermis, H. concinna, Ixodes ricinus, I. hexagonus, and two Ixodes spp. Ixodes hexagonus were collected from northern white-breasted hedgehogs (Erinaceus roumanicus), females belonging to Ixodes spp. were collected from red fox (Vulpes vulpes) and nymphs from European badger (Meles meles). Ixodes hexagonus and the Ixodes spp. were identified morphologically and molecularly based on sequences of fragments of two mitochondrial genes, COI and 16S rRNA. Molecular analysis of Ixodes spp. confirmed the identity of Ixodes kaiseri Arthur, 1957 and I. canisuga (Johnston, 1849). Sequence analyses show that the I. kaiseri isolate from Slovakia is identical to I. kaiseri isolates from Romania, Poland, Germany, Turkey, and Croatia. We demonstrate for the first time the presence of I. kaiseri in Slovakia using both morphological and molecular methods

    BIODIVERSITY OF SELECTED INVERTEBRATE GROUPS IN OAK-HORNBEAM FOREST ECOSYSTEM IN SW SLOVAKIA

    Get PDF
    Abstract Holecová M., Krumpál M., Országh I., Krumpálová Z., Fedor P.: Biodiversity of selected invertebrate groups in oak-hornbeam forest ecosystem in SW Slovakia. Ekológia (Bratislava), Vol. 24, Supplement 2/2005, p. 205-222. The paper summarizes analyses of 4-year long coenological research on micro-and macrofauna in oak-hornbeam forest ecosystems in SW Slovakia. The studied forest ecosystems, 40-100 years of age, are situated in the orographic units of the Malé Karpaty Mts. and Trnavská pahorkatina hills and may be classified into 3 vegetation types: Carpinion betuli, Quercion confertae-cerris and Quercion pubescentis-petraeae. In total we determined 39,987 invertebrates (except for Protozoa) and thus recorded 575 species of 4 phyla (Ciliophora, Rhizopoda, Tardigrada, Arthropoda). Twelve taxocoenoses of ciliates, naked amoebae, water bears, pseudoscorpions, spiders, mesostigmatid mites, terrestrial isopods, centipedes, millipedes, earwigs, bugs, weevils were analysed more in detail. Apart from forest epigeon we were focused on some other microhabitats, such as decaying wood mater, mosses and dendrotelmae. Of the studied microfauna just the community from decaying wood possessed affinity to soil. In the other microhabitats (dendrotelmae and mosses) species are predominantly interacted with aquatic environment. There are stronger bonds onto soil at arthropods, represented particularly by epigeic, partially by typically edaphic species. Of the 15 analysed variables just age of a stand, depth of leaf litter, undergrowth coverness of canopy and sporadically pollution (dust from the quarry) appeared as significantly influencing the studied arthropod communities

    Zmeny disperzie epigeických skupín živočíchov v rôznych typoch poľnohospodárskych plodín

    Get PDF
    In the country, agricultural land is an irreplaceable resource for the production of food and raw materials. Changes in the structure of epigeic groups reflect changes in the ecological status of habitats and response to the environmental pressure that affects them (e.g., intensification of cultivation, impact of herbicides and pesticides, agrotechnics, largescale and monoculture areas). The aim of this research is to assess the influence of seven different agricultural crops (Pisum sativum, Triticum aestivum, T. spelta, Hordeum vulgare, Zea mays, Brassica napus, grass mixture) and environmental variables (pH soil, soil moisture, light conditions, soil fertility) on the dispersion of epigeic groups. Between 2018 and 2020, 40,194 individuals belonging to 22 taxonomic groups collected by pitfall traps were recorded in the observed crops. Our results provide new information on the preference of epigeic groups for some agricultural crops such as the grass mixture (P=0.0096), Hordeum vulgare (P=0.0166), Zea mays (P=0.025), and Pisum sativum (P=0.045). The dispersion was also affected by soil fertility (P=0.032), soil humidity (P=0.012), light (P=0.042) and pH soil (P=0.046). In the beetles model group with the highest number of individuals, the trend of increasing number of individuals with increasing values of potassium (r = 0.631), phosphorus (r = 0.566), nitrogen (r = 0.641), soil moisture (r = 0.572), and light (r = 0.9962) using a regression model was recorded. The neutral pH of the soil (r = 0.6212) was optimal for beetle coenoses.Poľnohospodárska pôda predstavuje v krajine nenahraditeľný zdroj, umožňujúci produkciu potravín a surovín. Zmeny v štruktúre epigeických skupín odzrkadľuju zmeny ekologického stavu biotopov a sú odozvou environmentálneho tlaku, ktorý ich ovplyvňuje (napr. intenzifikácia obrábania, vplyv herbicídov a pesticídov, agrotechnika, veľkoplošné a monokultúrne plochy). Cieľom výskumu je posúdiť vplyv siedmich poľnohospodárskych plodín (Pisum sativum, Triticum aestivum, Triticum spelta, Hordeum vulgare, Zea mays, Brassica napus, Grass mixture) a environmentálnych premenných (pH pôdy, pôdna vlhkosť, sveteľné podmienky, úrodnosť pôdy) na disperziu epigeických skupín. V priebehu rokov 2018 - 2020 sme získali a odchytili pomocou zemných pascí 40 194 jedincov patriacich do 22 taxonomických skupín. Naše výsledky priniesli nové informácie o preferencii epigeických skupín na určité poľnohospodárske plodiny, akými sú Grass mixture (P=0.0096), Hordeum vulgare (P=0.0166), Zea mays (P=0.025), Pisum sativum (P=0.045). Na disperziu vplývali aj úrodnosť pôdy (P=0.032), vlhkosť pôdy (P=0.012), svetelné podmienky (P=0.042) a pH pôdy (P=0.046). Modelovú skupinu Coleoptera, ktorá bola zastúpená najvyšším počtom jedincov, sme použili pri regresnom modeli. Potvrdili sme silný vzťah a trend rastu počtu jedincov so stúpajúcimi hodnotami draslíka (r = 0.631), fosforu (r = 0.556), dusíka (r = 0.641), vlhkosti (r = 0.572) a svetla (r = 0.9962). Pre cenózy chrobákov bolo optimálne neutrálne pH pôdy (r = 0.6212)

    Land Snails in the Slovak Open-Air Garden Centres

    No full text
    In last decades, the number of non-native land snails increased up to 15 percentages; they create more than eight percent of all the Slovakian species. Trend of newly established snail species corresponds with increases in the average temperatures as well as the intensity of foreign trade, suggesting a synergistic effect of both climatic conditions and socioeconomic factors. The research of the open-air garden centres in Slovakia confirmed both factors. We report here some of the newly established populations of sixteen mollusc species. In the old garden centres, the number of species as well as the number of individuals decreased slightly. Area of the garden centre has a very high impact on both abundance and species diversity. The size and age of garden centre proportionally influences the composition of mollusc assemblages. Two new species Cornu aspersum and Cepaea nemoralis were noticed for the first time in Slovakia. The recent findings of the introduced populations demonstrate the potential of this snail to colonise new areas

    Molecular characterisation of three Ixodes (Pholeoixodes) species (Ixodida, Ixodidae) and the first record of Ixodes (Pholeoixodes) kaiseri from Slovakia

    No full text
    A study of ticks on wildlife was carried out in the area of Levice, Bratislava, Stupava and Vrbovce (south-western Slovakia) during the years 2021-2022. Overall, 512 ticks were collected from 51 wild mammalian individuals of six species. In total, eight tick species were identified, namely Dermacentor reticulatus, D. marginatus, Haemaphysalis inermis, H. concinna, Ixodes ricinus, I. hexagonus and two Ixodes spp. Ixodes hexagonus were collected from Northern white-breasted hedgehogs (Erinaceus roumanicus), females belonging to Ixodes spp. were collected from a red fox (Vulpes vulpes) and nymphs from a Eurasian badger (Meles meles). Ixodes hexagonus and the Ixodes spp. were identified morphologically and molecularly based on sequences of fragments of two mitochondrial genes, COI and 16S rRNA. Molecular analysis of Ixodes spp. confirmed the identity of Ixodes kaiseri Arthur, 1957 and I. canisuga (Johnston, 1849). Sequence analyses show that the I. kaiseri isolate from Slovakia is identical to I. kaiseri isolates from Romania, Poland, Germany, Turkey, and Croatia. We demonstrate for the first time the presence of I. kaiseri in Slovakia using both morphological and molecular methods

    Tegenaria hasperi Chyzer, 1897 and Zoropsis spinimana (Dufour, 1820), newly recorded synanthropic spiders from Slovakia (Araneae, Agelenidae, Zoropsidae)

    Get PDF
    Tegenaria hasperi Chyzer, 1897 (Agelenidae) and Zoropsis spinimana (Dufour, 1820) (Zoropsidae) are recorded in Slovakia for the first time. Both species were collected in synanthropic habitats in Western Slovakia. Two males of T. hasperi were collected in the garden of a family house, and both sexes of Z. spinimana were recorded from the interiors and exteriors of buildings in four separate cities, representing the first record of the family Zoropsidae in Slovakia. This contribution provides additional information on the morphological characteristics of these species. Digital images of their habitus and copulatory organs, as well as their distribution and habitat preferences are included.

    Proposal of a Relational Database (SQL) for Zoological Research of Epigeic Synusion

    Get PDF
    In recent years, developments in the field of molecular biology and genetics have led to the increase in biological information stored in databases. The same increase in the volume of information occurred in the field of zoology, but the development of databases was not addressed in this area. We prepared a relational database and its diagram in the Microsoft SQL Server Management Studio (SSMS) database program. Our results represent experience with construction of a new database design for the zoology field with a focus on research of epigeic groups. The structure of the database will help with meta-analyzes with the objective to identify zoological and ecological relationships and responses to anthropic intervention
    corecore