2,182 research outputs found

    Scaling properties of step bunches induced by sublimation and related mechanisms: A unified perspective

    Full text link
    This work provides a ground for a quantitative interpretation of experiments on step bunching during sublimation of crystals with a pronounced Ehrlich-Schwoebel (ES) barrier in the regime of weak desorption. A strong step bunching instability takes place when the kinetic length is larger than the average distance between the steps on the vicinal surface. In the opposite limit the instability is weak and step bunching can occur only when the magnitude of step-step repulsion is small. The central result are power law relations of the between the width, the height, and the minimum interstep distance of a bunch. These relations are obtained from a continuum evolution equation for the surface profile, which is derived from the discrete step dynamical equations for. The analysis of the continuum equation reveals the existence of two types of stationary bunch profiles with different scaling properties. Through a mathematical equivalence on the level of the discrete step equations as well as on the continuum level, our results carry over to the problems of step bunching induced by growth with a strong inverse ES effect, and by electromigration in the attachment/detachment limited regime. Thus our work provides support for the existence of universality classes of step bunching instabilities [A. Pimpinelli et al., Phys. Rev. Lett. 88, 206103 (2002)], but some aspects of the universality scenario need to be revised.Comment: 21 pages, 8 figure

    Structural, magnetic, electric, dielectric, and thermodynamic properties of multiferroic GeV4S8

    Full text link
    The lacunar spinel GeV4S8 undergoes orbital and ferroelectric ordering at the Jahn-Teller transition around 30 K and exhibits antiferromagnetic order below about 14 K. In addition to this orbitally driven ferroelectricity, lacunar spinels are an interesting material class, as the vanadium ions form V4 clusters representing stable molecular entities with a common electron distribution and a well-defined level scheme of molecular states resulting in a unique spin state per V4 molecule. Here we report detailed x-ray, magnetic susceptibility, electrical resistivity, heat capacity, thermal expansion, and dielectric results to characterize the structural, electric, dielectric, magnetic, and thermodynamic properties of this interesting material, which also exhibits strong electronic correlations. From the magnetic susceptibility, we determine a negative Curie-Weiss temperature, indicative for antiferromagnetic exchange and a paramagnetic moment close to a spin S = 1 of the V4 molecular clusters. The low-temperature heat capacity provides experimental evidence for gapped magnon excitations. From the entropy release, we conclude about strong correlations between magnetic order and lattice distortions. In addition, the observed anomalies at the phase transitions also indicate strong coupling between structural and electronic degrees of freedom. Utilizing dielectric spectroscopy, we find the onset of significant dispersion effects at the polar Jahn-Teller transition. The dispersion becomes fully suppressed again with the onset of spin order. In addition, the temperature dependencies of dielectric constant and specific heat possibly indicate a sequential appearance of orbital and polar order.Comment: 15 pages, 9 figure

    On Nonlinear Diffusion with Multiplicative Noise

    Full text link
    Nonlinear diffusion is studied in the presence of multiplicative noise. The nonlinearity can be viewed as a ``wall'' limiting the motion of the diffusing field. A dynamic phase transition occurs when the system ``unbinds'' from the wall. Two different universality classes, corresponding to the cases of an ``upper'' and a ``lower'' wall, are identified and their critical properties are characterized. While the lower wall problem can be understood by applying the knowledge of linear diffusion with multiplicative noise, the upper wall problem exhibits an anomaly due to nontrivial dynamics in the vicinity of the wall. Broad power-law distribution is obtained throughout the bound phase.Comment: 4 pages, LaTeX, text and figures also available at http://matisse.ucsd.edu/~hw

    Anisotropy of the paramagnetic susceptibility in LaTiO3_{3}: The electron-distribution picture in the ground state

    Full text link
    The energy-level scheme and wave functions of the titanium ions in LaTiO3_{3} are calculated using crystal-field theory and spin-orbit coupling. The theoretically derived temperature dependence and anisotropy of the magnetic susceptibility agree well with experimental data obtained in an untwinned single crystal. The refined fitting procedure reveals an almost isotropic molecular field and a temperature dependence of the van Vleck susceptibility. The charge distribution of the 3d--electron on the Ti positions and the principle values of the quadrupole moments are derived and agree with NMR data and recent measurements of orbital momentum and crystal-field splitting. The low value of the ordered moment in the antiferromagnetic phase is discussed.Comment: 6 pages, 2 figures, 3 table

    THz spectroscopy in the pseudo-Kagome system Cu3Bi(SeO3)2O2Br

    Full text link
    Terahertz (THz) transmission spectra have been measured as function of temperature and magnetic field on single crystals of Cu3Bi(SeO3)2O2Br. In the time-domain THz spectra without magnetic field, two resonance absorptions are observed below the magnetic ordering temperature T_N~27.4 K. The corresponding resonance frequencies increase with decreasing temperature and reach energies of 1.28 and 1.23 meV at 3.5 K. Multi-frequency electron spin resonance transmission spectra as a function of applied magnetic field show the field dependence of four magnetic resonance modes, which can be modeled as a ferromagnetic resonance including demagnetization and anisotropy effects.Comment: 5 pages, 3 figures. All comments are welcome and appreciate

    Anisotropic Exchange in LiCuVO4_4 probed by ESR

    Full text link
    We investigated the paramagnetic resonance in single crystals of LiCuVO4_4 with special attention to the angular variation of the absorption spectrum. To explain the large resonance linewidth of the order of 1 kOe, we analyzed the anisotropic exchange interaction in the chains of edge-sharing CuO6_6 octahedra, taking into account the ring-exchange geometry of the nearest-neighbor coupling via two symmetric rectangular Cu-O bonds. The exchange parameters, which can be estimated from theoretical considerations, nicely agree with the parameters obtained from the angular dependence of the linewidth. The anisotropy of this magnetic ring exchange is found to be much larger than it is usually expected from conventional estimations which neglect the bonding geometry. Hence, the data yield the evidence that in copper oxides with edge-sharing structures the role of the orbital degrees of freedom is strongly enhanced. These findings establish LiCuVO4_4 as one-dimensional compound at high temperatures. PACS: 76.30.-v, 76.30.Fc, 75.30.EtComment: 18 pages, 6 figure

    Unconventional magnetostructural transition in CoCr2O4 at high magnetic fields

    Full text link
    The magnetic-field and temperature dependencies of ultrasound propagation and magnetization of single-crystalline CoCr2O4 have been studied in static and pulsed magnetic fields up to 14 T and 62 T, respectively. Distinct anomalies with significant changes in the sound velocity and attenuation are found in this spinel compound at the onset of long-range incommensurate spiral-spin order at T_s = 27 K and at the transition from the incommensurate to the commensurate state at T_l = 14 K, evidencing strong spin-lattice coupling. While the magnetization evolves gradually with field, steplike increments in the ultrasound clearly signal a transition into a new magneto-structural state between 6.2 and 16.5 K and at high magnetic fields. We argue that this is a high-symmetry phase with only the longitudinal component of the magnetization being ordered, while the transverse helical component remains disordered. This phase is metastable in an extended H-T phase space.Comment: 5 pages, 4 figure

    Transition from KPZ to Tilted Interface Critical Behavior in a Solvable Asymmetric Avalanche Model

    Full text link
    We use a discrete-time formulation to study the asymmetric avalanche process [Phys. Rev. Lett. vol. 87, 084301 (2001)] on a finite ring and obtain an exact expression for the average avalanche size of particles as a function of toppling probabilities depending on parameters μ\mu and α\alpha. By mapping the model below and above the critical line onto driven interface problems, we show how different regimes of avalanches may lead to different types of critical interface behavior characterized by either annealed or quenched disorders and obtain exactly the related critical exponents which violate a well-known scaling relation when α≠2\alpha \ne 2.Comment: 10 page

    Field-controlled phase separation at the impurity-induced magnetic ordering in the spin-Peierls magnet CuGeO3

    Full text link
    The fraction of the paramagnetic phase surviving at the impurity-induced antiferromagnetic order transition of the doped spin-Peierls magnet Cu(1-x)Mg(x)GeO3 (x < 5%) is found to increase with an external magnetic field. This effect is qualitatively explained by the competition of Zeeman energy and exchange interaction between local antiferromagnetic clustersComment: 4 pages 4 figure
    • …
    corecore