329 research outputs found
Near-thermal limit gating in heavily-doped III-V semiconductor nanowires using polymer electrolytes
Doping is a common route to reducing nanowire transistor on-resistance but
has limits. High doping level gives significant loss in gate performance and
ultimately complete gate failure. We show that electrolyte gating remains
effective even when the Be doping in our GaAs nanowires is so high that
traditional metal-oxide gates fail. In this regime we obtain a combination of
sub-threshold swing and contact resistance that surpasses the best existing
p-type nanowire MOSFETs. Our sub-threshold swing of 75 mV/dec is within 25% of
the room-temperature thermal limit and comparable with n-InP and n-GaAs
nanowire MOSFETs. Our results open a new path to extending the performance and
application of nanowire transistors, and motivate further work on improved
solid electrolytes for nanoscale device applications.Comment: 6 pages, 2 figures, supplementary available at journa
Effective g-factor in Majorana Wires
We use the effective g-factor of subgap states, g*, in hybrid InAs nanowires
with an epitaxial Al shell to investigate how the superconducting density of
states is distributed between the semiconductor core and the metallic shell. We
find a step-like reduction of g* and improved hard gap with reduced carrier
density in the nanowire, controlled by gate voltage. These observations are
relevant for Majorana devices, which require tunable carrier density and g*
exceeding the g-factor of the proximitizing superconductor. Additionally, we
observe the closing and reopening of a gap in the subgap spectrum coincident
with the appearance of a zero-bias conductance peak
Towards low-dimensional hole systems in Be-doped GaAs nanowires
GaAs was central to the development of quantum devices but is rarely used for
nanowire-based quantum devices with InAs, InSb and SiGe instead taking the
leading role. p-type GaAs nanowires offer a path to studying strongly-confined
0D and 1D hole systems with strong spin-orbit effects, motivating our
development of nanowire transistors featuring Be-doped p-type GaAs nanowires,
AuBe alloy contacts and patterned local gate electrodes towards making
nanowire-based quantum hole devices. We report on nanowire transistors with
traditional substrate back-gates and EBL-defined metal/oxide top-gates produced
using GaAs nanowires with three different Be-doping densities and various AuBe
contact processing recipes. We show that contact annealing only brings small
improvements for the moderately-doped devices under conditions of lower anneal
temperature and short anneal time. We only obtain good transistor performance
for moderate doping, with conduction freezing out at low temperature for
lowly-doped nanowires and inability to reach a clear off-state under gating for
the highly-doped nanowires. Our best devices give on-state conductivity 95 nS,
off-state conductivity 2 pS, on-off ratio ~, and sub-threshold slope 50
mV/dec at T = 4 K. Lastly, we made a device featuring a moderately-doped
nanowire with annealed contacts and multiple top-gates. Top-gate sweeps show a
plateau in the sub-threshold region that is reproducible in separate cool-downs
and indicative of possible conductance quantization highlighting the potential
for future quantum device studies in this material system
p-GaAs nanowire MESFETs with near-thermal limit gating
Difficulties in obtaining high-performance p-type transistors and gate
insulator charge-trapping effects present two major challenges for III-V
complementary metal-oxide semiconductor (CMOS) electronics. We report a p-GaAs
nanowire metal-semiconductor field-effect transistor (MESFET) that eliminates
the need for a gate insulator by exploiting the Schottky barrier at the
metal-GaAs interface. Our device beats the best-performing p-GaSb nanowire
metal-oxide-semiconductor field effect transistor (MOSFET), giving a typical
sub-threshold swing of 62 mV/dec, within 4% of the thermal limit, on-off ratio
, on-resistance ~700 k, contact resistance ~30 k,
peak transconductance 1.2 S/m and high-fidelity ac operation at
frequencies up to 10 kHz. The device consists of a GaAs nanowire with an
undoped core and heavily Be-doped shell. We carefully etch back the nanowire at
the gate locations to obtain Schottky-barrier insulated gates whilst leaving
the doped shell intact at the contacts to obtain low contact resistance. Our
device opens a path to all-GaAs nanowire MESFET complementary circuits with
simplified fabrication and improved performance
Nonlocality of Majorana modes in hybrid nanowires
Spatial separation of Majorana zero modes distinguishes trivial from topological midgap states and is key to topological protection in quantum computing applications. Although signatures of Majorana zero modes in tunneling spectroscopy have been reported in numerous studies, a quantitative measure of the degree of separation, or nonlocality, of the emergent zero modes has not been reported. Here, we present results of an experimental study of nonlocality of emergent zero modes in superconductor-semiconductor hybrid nanowire devices. The approach takes advantage of recent theory showing that nonlocality can be measured from splitting due to hybridization of the zero mode in resonance with a quantum dot state at one end of the nanowire. From these splittings as well as anticrossing of the dot states, measured for even and odd occupied quantum dot states, we extract both the degree of nonlocality of the emergent zero mode, as well as the spin canting angles of the nonlocal zero mode. Depending on the device measured, we obtain either a moderate degree of nonlocality, suggesting a partially separated Andreev subgap state, or a highly nonlocal state consistent with a well-developed Majorana modeThis research was supported by Microsoft, the Danish National Research Foundation, the European Commission, and the Spanish Ministry of Economy and Competitiveness through Grants No. FIS2015-65706-P, No. FIS2015-64654-P, and No. FIS2016-80434-P (AEI/FEDER, EU), the Ramón y Cajal programme Grant No. RYC-2011-09345, and the María de Maeztu Programme for Units of Excellence in R&D (Grant No. MDM-2014-0377). C.M.M. acknowledges support from the Villum Foundation. M.-T.D. acknowledges support from State Key Laboratory of High Performance Computing, Chin
A Semiconductor Nanowire-Based Superconducting Qubit
We introduce a hybrid qubit based on a semiconductor nanowire with an
epitaxially grown superconductor layer. Josephson energy of the transmon-like
device ("gatemon") is controlled by an electrostatic gate that depletes
carriers in a semiconducting weak link region. Strong coupling to an on-chip
microwave cavity and coherent qubit control via gate voltage pulses is
demonstrated, yielding reasonably long relaxation times (0.8 {\mu}s) and
dephasing times (1 {\mu}s), exceeding gate operation times by two orders of
magnitude, in these first-generation devices. Because qubit control relies on
voltages rather than fluxes, dissipation in resistive control lines is reduced,
screening reduces crosstalk, and the absence of flux control allows operation
in a magnetic field, relevant for topological quantum information
- …