556 research outputs found

    Structure—activity relationships for chloro‐ and nitrophenol toxicity in the pollen tube growth test

    Get PDF
    —Acute toxicity of 10 chlorophenols and 10 nitrophenols with identical substitution patterns is analyzed with the pollen tubegrowth (PTG) test. Concentration values of 50% growth inhibition (IC50) between 0.1 and 300 mg/L indicate that the absolutesensitivity of this alternative biotest is comparable to conventional aquatic test systems. Analysis of quantitative structure–activityrelationships using lipophilicity (log Kow), acidity (pKa), and quantum chemical parameters to model intrinsic acidity, solvation interactions,and nucleophilicity reveals substantial differences between the intraseries trends of log IC50. With chlorophenols, a narcotictyperelationship is derived, which, however, shows marked differences in slope and intercept when compared to reference regressionequations for polar narcosis. Regression analysis of nitrophenol toxicity suggests interpretation in terms of two modes of action:oxidative uncoupling activity is associated with a pKa window from 3.8 to 8.5, and more acidic congeners with diortho- substitutionshow a transition from uncoupling to a narcotic mode of action with decreasing pKa and log Kow. Model calculations for phenolnucleophilicity suggest that differences in the phenol readiness for glucuronic acid conjugation as a major phase-II detoxication pathway have no direct influence on acute PTG toxicity of the compounds

    The impact of pre- and post-image processing techniques on deep learning frameworks: A comprehensive review for digital pathology image analysis.

    Get PDF
    Recently, deep learning frameworks have rapidly become the main methodology for analyzing medical images. Due to their powerful learning ability and advantages in dealing with complex patterns, deep learning algorithms are ideal for image analysis challenges, particularly in the field of digital pathology. The variety of image analysis tasks in the context of deep learning includes classification (e.g., healthy vs. cancerous tissue), detection (e.g., lymphocytes and mitosis counting), and segmentation (e.g., nuclei and glands segmentation). The majority of recent machine learning methods in digital pathology have a pre- and/or post-processing stage which is integrated with a deep neural network. These stages, based on traditional image processing methods, are employed to make the subsequent classification, detection, or segmentation problem easier to solve. Several studies have shown how the integration of pre- and post-processing methods within a deep learning pipeline can further increase the model's performance when compared to the network by itself. The aim of this review is to provide an overview on the types of methods that are used within deep learning frameworks either to optimally prepare the input (pre-processing) or to improve the results of the network output (post-processing), focusing on digital pathology image analysis. Many of the techniques presented here, especially the post-processing methods, are not limited to digital pathology but can be extended to almost any image analysis field

    Impact of stain normalization and patch selection on the performance of convolutional neural networks in histological breast and prostate cancer classification

    Get PDF
    Abstract Background Recently, deep learning has rapidly become the methodology of choice in digital pathology image analysis. However, due to the current challenges of digital pathology (color stain variability, large images, etc.), specific pre-processing steps are required to train a reliable deep learning model. Method In this work, there are two main goals: i) present a fully automated pre-processing algorithm for a smart patch selection within histopathological images, and ii) evaluate the impact of the proposed strategy within a deep learning framework for the detection of prostate and breast cancer. The proposed algorithm is specifically designed to extract patches only on informative regions (i.e., high density of nuclei), most likely representative of where cancer can be detected. Results Our strategy was developed and tested on 1000 hematoxylin and eosin (H&E) stained images of prostate and breast tissue. By combining a stain normalization step and a segmentation-driven patch extraction, the proposed approach is capable of increasing the performance of a computer-aided diagnosis (CAD) system for the detection of prostate cancer (18.61% accuracy improvement) and breast cancer (17.72% accuracy improvement). Conclusion We strongly believe that the integration of the proposed pre-processing steps within deep learning frameworks will allow the achievement of robust and reliable CAD systems. Being based on nuclei detection, this strategy can be easily extended to other glandular tissues (e.g., colon, thyroid, pancreas, etc.) or staining methods (e.g., PAS)

    Ultrasound IMT measurement on a multi-ethnic and multi-institutional database: Our review and experience using four fully automated and one semi-automated methods

    Get PDF
    Automated and high performance carotid intima-media thickness (IMT) measurement is gaining increasing importance in clinical practice to assess the cardiovascular risk of patients. In this paper, we compare four fully automated IMT measurement techniques (CALEX, CAMES, CARES and CAUDLES) and one semi-automated technique (FOAM). We present our experience using these algorithms, whose lumen-intima and media-adventitia border estimation use different methods that can be: (a) edge-based; (b) training-based; (c) feature-based; or (d) directional Edge-Flow based. Our database (DB) consisted of 665 images that represented a multi-ethnic group and was acquired using four OEM scanners. The performance evaluation protocol adopted error measures, reproducibility measures, and Figure of Merit (FoM). FOAM showed the best performance, with an IMT bias equal to 0.025 ± 0.225 mm, and a FoM equal to 96.6%. Among the four automated methods, CARES showed the best results with a bias of 0.032 ± 0.279 mm, and a FoM to 95.6%, which was statistically comparable to that of FOAM performance in terms of accuracy and reproducibility. This is the first time that completely automated and user-driven techniques have been compared on a multi-ethnic dataset, acquired using multiple original equipment manufacturer (OEM) machines with different gain settings, representing normal and pathologic case

    Impact of stain normalization and patch selection on the performance of convolutional neural networks in histological breast and prostate cancer classification

    Get PDF
    Background Recently, deep learning has rapidly become the methodology of choice in digital pathology image analysis. However, due to the current challenges of digital pathology (color stain variability, large images, etc.), specific pre-processing steps are required to train a reliable deep learning model. Method In this work, there are two main goals: i) present a fully automated pre-processing algorithm for a smart patch selection within histopathological images, and ii) evaluate the impact of the proposed strategy within a deep learning framework for the detection of prostate and breast cancer. The proposed algorithm is specifically designed to extract patches only on informative regions (i.e., high density of nuclei), most likely representative of where cancer can be detected. Results Our strategy was developed and tested on 1000 hematoxylin and eosin (H&E) stained images of prostate and breast tissue. By combining a stain normalization step and a segmentation-driven patch extraction, the proposed approach is capable of increasing the performance of a computer-aided diagnosis (CAD) system for the detection of prostate cancer (18.61% accuracy improvement) and breast cancer (17.72% accuracy improvement). Conclusion We strongly believe that the integration of the proposed pre-processing steps within deep learning frameworks will allow the achievement of robust and reliable CAD systems. Being based on nuclei detection, this strategy can be easily extended to other glandular tissues (e.g., colon, thyroid, pancreas, etc.) or staining methods (e.g., PAS)

    Physical activity and self-reported metabolic syndrome risk factors in the Aboriginal population in Perth, Australia, measured using an adaptation of the global physical activity questionnaire (gpaq)

    Get PDF
    Background: Complex, ongoing social factors have led to a context where metabolic syndrome (MetS) is disproportionately high in Aboriginal Australians. MetS is characterised by insulin resistance, abdominal obesity, hypertension, hypertriglyceridemia, high blood-sugar and low HDL-C. This descriptive study aimed to document physical activity levels, including domains and intensity and sedentary behaviour, and MetS risk factors in the Perth Aboriginal (predominately Noongar) community. Methods: The Global Physical Activity Questionnaire (GPAQ), together with a questionnaire on self-reported MetS risk factors, was circulated to community members for completion during 2014 (n = 129). Results: Data were analysed using chi-squared tests. The average (SD) age was 37.8 years (14) and BMI of 31.4 (8.2) kg/m2 . Occupational, transport-related and leisure-time physical activity (PA) and sedentary intensities were reported across age categories. The median (interquartile range) daily sedentary time was 200 (78, 435), 240 (120, 420) and 180 (60, 300) minutes for the 18–25, 26–44 and 45+ year-olds, respectively (p = 0.973). Conclusions: An in-depth understanding of the types, frequencies and intensities of PA reported for the Perth Aboriginal community is important to implementing targeted strategies to reduce the prevalence of chronic disease in this context. Future efforts collaborating with community should aim to reduce the risk factors associated with MetS and improve quality of life

    The interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons

    Full text link
    We have studied the interaction of polyaromatic hydrocarbons (PAHs) with the basal plane of graphite using thermal desorption spectroscopy. Desorption kinetics of benzene, naphthalene, coronene and ovalene at sub-monolayer coverages yield activation energies of 0.50 eV, 0.85 eV, 1.40 eV and 2.1 eV, respectively. Benzene and naphthalene follow simple first order desorption kinetics while coronene and ovalene exhibit fractional order kinetics owing to the stability of 2-D adsorbate islands up to the desorption temperature. Pre-exponential frequency factors are found to be in the range 101410^{14}-1021s110^{21} s^{-1} as obtained from both Falconer--Madix (isothermal desorption) analysis and Antoine's fit to vapour pressure data. The resulting binding energy per carbon atom of the PAH is 52±52\pm5 meV and can be identified with the interlayer cohesive energy of graphite. The resulting cleavage energy of graphite is 61±561\pm5~meV/atom which is considerably larger than previously reported experimental values.Comment: 8 pages, 4 figures, 2 table
    corecore