52 research outputs found

    Higgs production in CP-violating supersymmetric cascade decays: probing the `open hole' at the Large Hadron Collider

    Full text link
    A benchmark CP-violating supersymmetric scenario (known as 'CPX-scenario' in the literature) is studied in the context of the Large Hadron Collider (LHC). It is shown that the LHC, with low to moderate accumulated luminosity, will be able to probe the existing `hole' in the mh1m_{h_1}-tan⁡β\tan\beta plane, which cannot be ruled out by the LEP data. We explore the parameter space with cascade decay of third generation squarks and gluino with CP-violating decay branching fractions. We propose a multi-channel analysis to probe this parameter space some of which are background free at an integrated luminosity of 5-10 fb−1^{-1}. Specially, multi-lepton final states (3\l,\, 4\l and like sign di-lepton) are almost background free and have 5σ5\sigma reach for the corresponding signals with very early data of LHC for both 14 TeV and 7 TeV center of mass energy.Comment: 24 pages, 9 figures, references added as in the journal versio

    Long-Lived Neutralino NLSPs

    Full text link
    We investigate the collider signatures of heavy, long-lived, neutral particles that decay to charged particles plus missing energy. Specifically, we focus on the case of a neutralino NLSP decaying to Z and gravitino within the context of General Gauge Mediation. We show that a combination of searches using the inner detector and the muon spectrometer yields a wide range of potential early LHC discoveries for NLSP lifetimes ranging from 10^(-1)-10^5 mm. We further show that events from Z(l+l-) can be used for detailed kinematic reconstruction, leading to accurate determinations of the neutralino mass and lifetime. In particular, we examine the prospects for detailed event study at ATLAS using the ECAL (making use of its timing and pointing capabilities) together with the TRT, or using the muon spectrometer alone. Finally, we also demonstrate that there is a region in parameter space where the Tevatron could potentially discover new physics in the delayed Z(l+l-)+MET channel. While our discussion centers on gauge mediation, many of the results apply to any scenario with a long-lived neutral particle decaying to charged particles.Comment: 31 pages, 12 figure

    Simultaneous Extraction of the Fermi constant and PMNS matrix elements in the presence of a fourth generation

    Full text link
    Several recent studies performed on constraints of a fourth generation of quarks and leptons suffer from the ad-hoc assumption that 3 x 3 unitarity holds for the first three generations in the neutrino sector. Only under this assumption one is able to determine the Fermi constant G_F from the muon lifetime measurement with the claimed precision of G_F = 1.16637 (1) x 10^-5 GeV^-2. We study how well G_F can be extracted within the framework of four generations from leptonic and radiative mu and tau decays, as well as from K_l3 decays and leptonic decays of charged pions, and we discuss the role of lepton universality tests in this context. We emphasize that constraints on a fourth generation from quark and lepton flavour observables and from electroweak precision observables can only be obtained in a consistent way if these three sectors are considered simultaneously. In the combined fit to leptonic and radiative mu and tau decays, K_l3 decays and leptonic decays of charged pions we find a p-value of 2.6% for the fourth generation matrix element |U_{e 4}|=0 of the neutrino mixing matrix.Comment: 19 pages, 3 figures with 16 subfigures, references and text added refering to earlier related work, figures and text in discussion section added, results and conclusions unchange

    Hadronically decaying color-adjoint scalars at the LHC

    Get PDF
    We study the phenomenology of the pair-production of scalar color-octet electroweak singlet states at the LHC. Such states appear in many extensions of the Standard Model. They can be pair-produced copiously at the LHC and will signal themselves as resonances in multijet final states. Beyond the QCD pair-production process we consider a vectorlike confinement scenario with an additional color-octet vector state. These vector particles can be produced in the s-channel and through their decay contribute to the scalar pair production. We point out the differences between the two hypotheses and device a strategy to distinguish them.Comment: 15 pages, 10 figure

    Vacuum Instabilities with a Wrong-Sign Higgs-Gluon-Gluon Amplitude

    Get PDF
    The recently discovered 125 GeV boson appears very similar to a Standard Model Higgs, but with data favoring an enhanced h to gamma gamma rate. A number of groups have found that fits would allow (or, less so after the latest updates, prefer) that the h-t-tbar coupling have the opposite sign. This can be given meaning in the context of an electroweak chiral Lagrangian, but it might also be interpreted to mean that a new colored and charged particle runs in loops and produces the opposite-sign hGG amplitude to that generated by integrating out the top, as well as a contribution reinforcing the W-loop contribution to hFF. In order to not suppress the rate of h to WW and h to ZZ, which appear to be approximately Standard Model-like, one would need the loop to "overshoot," not only canceling the top contribution but producing an opposite-sign hGG vertex of about the same magnitude as that in the SM. We argue that most such explanations have severe problems with fine-tuning and, more importantly, vacuum stability. In particular, the case of stop loops producing an opposite-sign hGG vertex of the same size as the Standard Model one is ruled out by a combination of vacuum decay bounds and LEP constraints. We also show that scenarios with a sign flip from loops of color octet charged scalars or new fermionic states are highly constrained.Comment: 20 pages, 8 figures; v2: references adde

    Natural SUSY Predicts: Higgs Couplings

    Get PDF
    We study Higgs production and decays in the context of natural SUSY, allowing for an extended Higgs sector to account for a 125 GeV lightest Higgs boson. Under broad assumptions, Higgs observables at the LHC depend on at most four free parameters with restricted numerical ranges. Two parameters suffice to describe MSSM particle loops. The MSSM loop contribution to the diphoton rate is constrained from above by direct stop and chargino searches and by electroweak precision tests. Naturalness, in particular in demanding that rare B decays remain consistent with experiment without fine-tuned cancellations, provides a lower (upper) bound to the stop contribution to the Higgs-gluon coupling (Higgs mass). Two parameters suffice to describe Higgs mixing, even in the presence of loop induced non-holomorphic Yukawa couplings. Generic classes of MSSM extensions, that address the fine-tuning problem, predict sizable modifications to the effective bottom Yukawa, yb. Non-decoupling gauge extensions enhance yb, while a heavy SM singlet reduces yb. A factor of 4-6 enhancement in the diphoton rate at the LHC, compared to the SM prediction, can be accommodated. The ratio of the enhancements in the diphoton vs. the WW and ZZ channels cannot exceed 1.4. The h to bbbar rate in associated production cannot exceed the SM rate by more than 50%.Comment: 31 pages, 11 figure

    The Forward Physics Facility at the High-Luminosity LHC

    Get PDF

    Search for a heavy bottom-like quark in pp collisions at √s =7 TeV

    Get PDF
    This is the Pre-Print version of the Article. The official published version of the paper can be accessed from the link below - Copyright @ 2011 Elsevier.A search for pair-produced bottom-like quarks in pp collisions at sqrt(s) = 7 TeV is conducted with the CMS experiment at the LHC. The decay b' to tW is considered in this search. The b' b'-bar to tW^- t-bar W^+ process can be identified by the distinctive signature of trileptons and same-sign dileptons. With a data sample corresponding to an integrated luminosity of 34 inverse picobarns, no excess above the standard model background predictions is observed and a b' quark with a mass between 255 and 361 GeV/c^2 is excluded at the 95% confidence level.This work is supported by the FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    • …
    corecore