10,736 research outputs found

    Large scale simulations of the jet-IGM interaction

    Get PDF
    In a parameter study extending to jet densities of 10−510^{-5} times the ambient one, I have recently shown that light large scale jets start their lives in a spherical bow shock phase. This allows an easy description of the sideways bow shock propagation in that phase. Here, I present new, bipolar, simulations of very light jets in 2.5D and 3D, reaching the observationally relevant scale of >200>200 jet radii. Deviations from the early bow shock propagation law are expected because of various effects. The net effect is, however, shown to remain small. I calculate the X-ray appearance of the shocked cluster gas and compare it to Cygnus A and 3C 317. Rings, bright spots and enhancements inside the radio cocoon may be explained.Comment: 8 pages, 5 figures, ApSS accepted, proceedings of the virtual jets 2003 conference in Dogliani/Italy, v3: funny and unimportant bug corrected, one reference adde

    Theory of a refined earth model

    Get PDF
    Refined equations are derived relating the variations of the earths gravity and radius as functions of longitude and latitude. They particularly relate the oblateness coefficients of the old harmonics and the difference of the polar radii /respectively, ellipticities and polar gravity accelerations/ in the Northern and Southern Hemispheres

    Numerical modelling of the lobes of radio galaxies in cluster environments -- IV. Remnant radio galaxies

    Get PDF
    © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society.We examine the remnant phase of radio galaxies using three-dimensional hydrodynamical simulations of relativistic jets propagating through cluster environments. By switching the jets off once the lobes have reached a certain length we can study how the energy distribution between the lobes and shocked intra-cluster medium compares to that of an active source, as well as calculate synchrotron emission properties of the remnant sources. We see that as a result of disturbed cluster gas beginning to settle back into the initial cluster potential, streams of dense gas are pushed along the jet axis behind the remnant lobes, causing them to rise out of the cluster faster than they would due to buoyancy. This leads to increased adiabatic losses and a rapid dimming. The rapid decay of total flux density and surface brightness may explain the small number of remnant sources found in samples with a high flux density limit and may cause analytic models to overestimate the remnant fraction expected in sensitive surveys such as those now being carried out with LOFAR.Peer reviewedFinal Accepted Versio

    Probing gaseous halos of galaxies with radio jets

    Get PDF
    Reproduced with permission from Astronomy & Astrophysics. © 2019 ESOContext. Gaseous halos play a key role in understanding inflow, feedback, and the overall baryon budget in galaxies. Literature models predict transitions of the state of the gaseous halo between cold and hot accretion, winds, fountains, and hydrostatic halos at certain galaxy masses. Since luminosities of radio AGN are sensitive to halo densities, any significant transition would be expected to show up in the radio luminosities of large samples of galaxies. The LOw Frequency ARray (LOFAR) Two-Metre Sky Survey (LoTSS) has identified a galaxy stellar mass scale, 10 11 M ⊙, above which the radio luminosities increase disproportionately. Aims. We investigate if radio luminosities of galaxies, especially the marked rise at galaxy masses around 10 11 M ⊙, can be explained with standard assumptions regarding jet powers, scaling between black hole mass and galaxy mass, and gaseous halos. Methods. Based on observational data and theoretical constraints, we developed models for the radio luminosity of radio AGN in halos under infall, galactic wind, and hydrostatic conditions. We compared these models to LoTSS data for a large sample of galaxies in the mass range between 10 8.5 M ⊙ and 10 12 M ⊙. Results. Under the assumption that the same characteristic upper limit to jet powers known from high galaxy masses holds at all masses, we find the maximum radio luminosities for the hydrostatic gas halos to lie close to the upper envelope of the distribution of the LOFAR data. The marked rise in radio luminosity at 10 11 M ⊙ is matched in our model and is related to a significant change in halo gas density around this galaxy mass, which is a consequence of lower cooling rates at a higher virial temperature. Wind and infall models overpredict the radio luminosities for small galaxy masses and have no particular steepening of the run of the radio luminosities predicted at any galaxy mass. Conclusions. Radio AGN could have the same characteristic Eddington-scaled upper limit to jet powers in galaxies of all masses in the sample if the galaxies have hydrostatic gas halos in phases when radio AGN are active. We find no evidence of a change of the type of galaxy halo with the galaxy mass. Galactic winds and quasi-spherical cosmological inflow phases cannot frequently occur at the same time as powerful jet episodes unless the jet properties in these phases are significantly different from what we assumed in our model.Peer reviewedFinal Accepted Versio

    A new approach to the pulsed thermocouple for high gas temperature measurements

    Get PDF
    Pulsed thermocouple systems can be used to measure gas temperatures above the melting point of the thermocouple by various techniques of short term of intermittent exposure of the thermocouple operating at lower temperatures. An approach is described which uses a thermocouple cooled by a small jet of inert gas. When a measurement is to be made, the cooling jet is turned off and the thermocouple allowed to heat up to near its melting point, at which time the cooling is reapplied. The final temperature which the thermocouple should have attained is then calculated by extrapolating an exponential curve fit to the data. Temperature measurements can be recorded and displayed in near real time by using modern high-speed computing systems to perform these calculations. Examples of the technique applied to high temperature jet engine combustor development are presented

    Jets and multi-phase turbulence

    Full text link
    Jets are observed to stir up multi-phase turbulence in the inter-stellar medium as well as far beyond the host galaxy. Here we present detailed simulations of this process. We evolve the hydrodynamics equations with optically thin cooling for a 3D Kelvin Helmholtz setup with one initial cold cloud. The cloud is quickly disrupted, but the fragments remain cold and are spread throughout our simulation box. A scale free isotropic Kolmogorov power spectrum is built up first on the large scales, and reaches almost down to the grid scale after the simulation time of ten million years. We find a pronounced peak in the temperature distribution at 14,000K. The luminosity of the gas in this peak is correlated with the energy. We interpret this as a realisation of the shock ionisation scenario. The interplay between shock heating and radiative cooling establishes the equilibrium temperature. This is close to the observed emission in some Narrow Line Regions. We also confirm the shift of the phase equilibrium, i.e. a lower (higher) level of turbulence produces a higher (lower) abundance of cold gas. The effect could plausibly lead to a high level of cold gas condensation in the cocoons of extragalactic jets, explaining the so called Alignment Effect.Comment: 4 pages, 3 figures, conference: "The central kpc", Crete, June 2008, Volume 79 of the Memorie della Societa Astronomica Italian

    Synthetic 26Al emission from galactic-scale superbubble simulations

    Get PDF
    © 2019 The Author(s).Emission from the radioactive trace element 26Al has been observed throughout the Milky Way with the COMPTEL and INTEGRAL satellites. In particular the Doppler shifts measured with INTEGRAL connect 26Al with superbubbles, which may guide 26Al flows off spiral arms in the direction of Galactic rotation. In order to test this paradigm, we have performed galaxy-scale simulations of superbubbles with 26Al injection in a Milky Way-type galaxy. We produce all-sky synthetic γ−\gamma-ray emission maps of the simulated galaxies. We find that the 1809keV emission from the radioactive decay of 26Al is highly variable with time and the observer's position. This allows us to estimate an additional systematic variability of 0.2dex for a star formation rate derived from 26Al for different times and measurement locations in Milky Way-type galaxies. High-latitude morphological features indicate nearby emission with correspondingly high integrated gamma-ray intensities. We demonstrate that the 26Al scale height from our simulated galaxies depends on the assumed halo gas density. We present the first synthetic 1809keV longitude-velocity diagrams from 3D hydrodynamic simulations. The line-of-sight velocities for 26Al can be significantly different from the line-of-sight velocities associated with the cold gas. Over time, 26Al velocities consistent with the INTEGRAL observations, within uncertainties, appear at any given longitude, broadly supporting previous suggestions that 26Al injected into expanding superbubbles by massive stars may be responsible for the high velocities found in the INTEGRAL observations. We discuss the effect of systematically varying the location of the superbubbles relative to the spiral arms.Peer reviewedFinal Accepted Versio

    A Markov Chain Monte Carlo approach for measurement of jet precession in radio-loud active galactic nuclei

    Get PDF
    © 2020 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.Jet precession can reveal the presence of binary systems of supermassive black holes. The ability to accurately measure the parameters of jet precession from radio-loud AGN is important for constraining the binary supermassive black hole population, which are expected as a result of hierarchical galaxy evolution. The age, morphology, and orientation along the line of sight of a given source often result in uncertainties regarding jet path. This paper presents a new approach for efficient determination of precession parameters using a 2D MCMC curve-fitting algorithm which provides us a full posterior probability distribution on the fitted parameters. Applying the method to Cygnus A, we find evidence for previous suggestions that the source is precessing. Interpreted in the context of binary black holes leads to a constraint of parsec scale and likely sub-parsec orbital separation for the putative supermassive binary.Peer reviewe

    Preparation, Structure, and Reactivity of Nonstabilized Organoiron Compounds. Implications for Iron-Catalyzed Cross Coupling Reactions

    Get PDF
    A series of unprecedented organoiron complexes of the formal oxidation states −2, 0, +1, +2, and +3 is presented, which are largely devoid of stabilizing ligands and, in part, also electronically unsaturated (14-, 16-, 17- and 18-electron counts). Specifically, it is shown that nucleophiles unable to undergo β-hydride elimination, such as MeLi, PhLi, or PhMgBr, rapidly reduce Fe(3+) to Fe(2+) and then exhaustively alkylate the metal center. The resulting homoleptic organoferrate complexes [(Me4Fe)(MeLi)][Li(OEt2)]2 (3) and [Ph4Fe][Li(Et2O)2][Li(1,4-dioxane)] (5) could be characterized by X-ray crystal structure analysis. However, these exceptionally sensitive compounds turned out to be only moderately nucleophilic, transferring their organic ligands to activated electrophiles only, while being unable to alkylate (hetero)aryl halides unless they are very electron deficient. In striking contrast, Grignard reagents bearing alkyl residues amenable to β-hydride elimination reduce FeXn (n = 2, 3) to clusters of the formal composition [Fe(MgX)2]n. The behavior of these intermetallic species can be emulated by structurally well-defined lithium ferrate complexes of the type [Fe(C2H4)4][Li(tmeda)]2 (8), [Fe(cod)2][Li(dme)]2 (9), [CpFe(C2H4)2][Li(tmeda)] (7), [CpFe(cod)][Li(dme)] (11), or [Cp*Fe(C2H4)2][Li(tmeda)] (14). Such electron-rich complexes, which are distinguished by short intermetallic Fe−Li bonds, were shown to react with aryl chlorides and allyl halides; the structures and reactivity patterns of the resulting organoiron compounds provide first insights into the elementary steps of low valent iron-catalyzed cross coupling reactions of aryl, alkyl, allyl, benzyl, and propargyl halides with organomagnesium reagents. However, the acquired data suggest that such C−C bond formations can occur, a priori, along different catalytic cycles shuttling between metal centers of the formal oxidation states Fe(+1)/Fe(+3), Fe(0)/Fe(+2), and Fe(−2)/Fe(0). Since these different manifolds are likely interconnected, an unambiguous decision as to which redox cycle dominates in solution remains difficult, even though iron complexes of the lowest accessible formal oxidation states promote the reactions most effectively
    • …
    corecore