33 research outputs found

    A NOVEL APPROACH FOR FINDING DIABETIC MELLITUS USING ENSEMBLE MODEL FOR AN OPTIMIZED CLASSIFICATION

    Get PDF
      Diabetic mellitus is a chronic disease caused by hyperglycemia which should be treated with high care and medications. The objective of this work is to identify and classify the severity of the diabetic disease using the training data set. This is caused due to the defect in insulin secretion that may affect several organs in the body. Blood pressure and diabetic mellitus are the common twin diseases occurred in about 69.2 million people living in India around 8.7% of the population as per the data resealed in the year 2015. Correct diet, regular exercise will control disease to a great extent. In this research paper the applied methodology is a concurrent classifier for the diabetic mellitus and the results are analyzed with the supervised learning. From the University of California and Irvine repository related attributes for the diabetic mellitus are carefully measured through the ensemble classifier and the results are categorized in the dataset. This work results that boosting can be made to the dataset for obtaining accurate results and classifications. In the conclusion, ensemble methodology is the well proven methodology from the year 1993. For forecasting in N†number of domains, so for the ensemble classifier produces 93% of the accurate results are made. An audit can be made on the results and suggestions are given to the patients for taking medications with the help of medical practitioners

    High Prevalence of False Chordae Tendinae in Patients Without Left Ventricular Tachycardia

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74774/1/j.1540-8159.2007.00628.x.pd

    Protective Role of False Tendon in Subjects with Left Bundle Branch Block: A Virtual Population Study.

    Get PDF
    False tendons (FTs) are fibrous or fibromuscular bands that can be found in both the normal and abnormal human heart in various anatomical forms depending on their attachment points, tissue types, and geometrical properties. While FTs are widely considered to affect the function of the heart, their specific roles remain largely unclear and unexplored. In this paper, we present an in silico study of the ventricular activation time of the human heart in the presence of FTs. This study presents the first computational model of the human heart that includes a FT, Purkinje network, and papillary muscles. Based on this model, we perform simulations to investigate the effect of different types of FTs on hearts with the electrical conduction abnormality of a left bundle branch block (LBBB). We employ a virtual population of 70 human hearts derived from a statistical atlas, and run a total of 560 simulations to assess ventricular activation time with different FT configurations. The obtained results indicate that, in the presence of a LBBB, the FT reduces the total activation time that is abnormally augmented due to a branch block, to such an extent that surgical implant of cardiac resynchronisation devices might not be recommended by international guidelines. Specifically, the simulation results show that FTs reduce the QRS duration at least 10 ms in 80% of hearts, and up to 45 ms for FTs connecting to the ventricular free wall, suggesting a significant reduction of cardiovascular mortality risk. In further simulation studies we show the reduction in the QRS duration is more sensitive to the shape of the heart then the size of the heart or the exact location of the FT. Finally, the model suggests that FTs may contribute to reducing the activation time difference between the left and right ventricles from 12 ms to 4 ms. We conclude that FTs may provide an alternative conduction pathway that compensates for the propagation delay caused by the LBBB. Further investigation is needed to quantify the clinical impact of FTs on cardiovascular mortality risk

    Ethics Forum - Ethics of Patient Care by Trainee-Doctors in Teaching Hospitals

    No full text
    It is the aim of the teaching hospitals to provide the trainees and the supervising clinician-faculty with an environment conducive to teaching and learning without compromising the quality of patient care in any way. In contrast to the traditional learning in a classroom, clinical learning includes all activities undertaken by a trainee in providing patient care. An ethically sensitive teacher often faces the dilemma of having to balance between one's duty as a teacher to train the students well and duty as a clinician to do the best for the patient. The essence of this dilemma is - beneficence to students versus non-maleficence to patients. This can only be sorted out by careful introspection - "Is patient welfare being compromised to accommodate the needs of the students?

    Evaluation of preseparator performance for the 8-stage nonviable Andersen impactor

    No full text
    The preseparator of an Andersen impactor with different coating treatments for a range of particle-size distributions was evaluated. Limited theoretical simulations constrained by simplifying assumptions of the airflow fields in the preseparator and upper stages of an 8-stage Andersen impactor were used to reveal low-velocity and high-pressure regions for potential deposition. These regions were then sampled in subsequent particle deposition experiments. Disodium fluorescein aerosols were sampled with different coating treatments of the preseparator floor. Particles collected at impactor stages determined particle size distributions. Stage deposition was compared between different preseparator treatments (buffer and silicon oil). Collection efficiency in the preseparator followed the pattern buffer >silicon oil >untreated. Statistical differences (P>0.05) were noted in collection efficiency of large particles (45 μm-75 μm) in the preseparator. The mass median aerodynamic diameters and geometric standard deviations showed some statistical differences when different preseparator treatments for large particles were used; therefore, preseparator coating was shown to influence performance and thereby estimates of particle size by intertial impaction
    corecore