17 research outputs found

    Effect of vegetation cover and sediment type on 3D subsurface structure and shear strength in saltmarshes

    Get PDF
    Funder: Queen Mary; Id: http://dx.doi.org/10.13039/100009148Abstract: The vulnerability of saltmarshes to lateral erosion at their margin depends on the local biogeomorphological properties of the substrate. In particular, the 3D architecture of pore and root systems is expected to influence shear strength, with repercussions for the wider‐scale stability of saltmarshes. We apply X‐ray computed microtomography (ÎŒCT) to visualize and quantify subsurface structures in two UK saltmarshes at Tillingham Farm, Essex (silt/clay rich substrate) and Warton Sands (sand‐rich substrate), with four types of ground cover: bare ground, Spartina spp, Salicornia spp and Puccinellia spp. We extracted ÎŒCT structural parameters that characterize pore and root morphologies at each station, and compared them with field measurements of shear strength using a principal component analysis and correlation tests. The 3D volumes show that species‐dependent variations in root structures, plant colonization events and bioturbation activity control the morphology of macropores, while sediment cohesivity determines the structural stability and persistence of these pore structures over time, even after the vegetation has died. Areas of high porosity and high mean pore thickness were correlated to lower values of shear strength, especially at Tillingham Farm, where well‐connected vertical systems of macropores were associated with current or previous colonization by Spartina spp. However, while well‐connected systems of macropores may lower the local deformation threshold of the sediment, they also encourage drainage, promote vegetation growth and reduce the marsh vulnerability to hydrodynamic forces. The highest values of shear strength at both sites were found under Puccinellia spp, and were associated with a high density of mesh‐like root structures that bind the sediment and resist deformation. Future studies of marsh stability should ideally consider time series of vegetation cover, especially in silt/clay‐dominated saltmarshes, in order to consider the potential effect of preserved buried networks of macropores on water circulation, marsh functioning and cliff‐face erosion

    Property attribution of 3D geological models in the Thames Gateway, London : new ways of visualising geoscientific information

    Get PDF
    Rapid developments in information technology and the increasing collection and digitisation of geological data by the British Geological Survey now allow geoscientists to produce meaningful 3D spatial models of the shallow subsurface in many urban areas. Using this new technology, it is possible to model and predict not only the type of rocks in the shallow subsurface, but also their engineering properties (rock strength, shrink-swell characteristics and compressibility) and hydrogeological properties (permeability, porosity, thickness of the unsaturated zone or the likelihood of perched water tables) by attribution of the 3D model with geological property data. This paper describes the hydrogeological, engineering and confidence (uncertainty) attribution of high resolution models of the Thames Gateway Development Zone (TGDZ) east of London UK and proposes a future in which site investigation sets out to test a pre-existing spatial model based on real data rather than a conceptual model

    The 2010 Hans Cloos lecture : the contribution of urban geology to the development, regeneration and conservation of cities

    Get PDF
    Urban geology began to develop in the 1950s, particularly in California in relation to land-use planning, and led to Robert Legget publishing his seminal book “Cities and geology” in 1973. Urban geology has now become an important part of engineering geology. Research and practice has seen the evolution from single theme spatial datasets to multi-theme and multi-dimensional outputs for a wide range of users. In parallel to the development of these new outputs to aid urban development, regeneration and conservation, has been the growing recognition that city authorities need access to extensive databases of geo-information that are maintained in the long-term and renewed regularly. A further key advance has been the recognition that, in the urban environment, knowledge and understanding of the geology need to be integrated with those of other environmental topics (for example, biodiversity) and, increasingly, with the research of social scientists, economists and others. Despite these advances, it is suggested that the value of urban geology is not fully recognised by those charged with the management and improvement of the world’s cities. This may be because engineering geologists have failed to adequately demonstrate the benefits of urban geological applications in terms of cost and environmental improvement, have not communicated these benefits well enough and have not clearly shown the long-term contribution of geo-information to urban sustainability. Within this context future actions to improve the situation are proposed

    The petrogenesis of sodic island arc magmas at Savo volcano, Solomon Islands

    Get PDF
    Savo, Solomon Islands, is a historically active volcano dominated by sodic, alkaline lavas, and pyroclastic rocks with up to 7.5 wt% Na2O, and high Sr, arc-like trace element chemistry. The suite is dominated by mugearites (plagioclase–clinopyroxene–magnetite ± amphibole ± olivine) and trachytes (plagioclase–amphibole–magnetite ± biotite). The presence of hydrous minerals (amphibole, biotite) indicates relatively wet magmas. In such melts, plagioclase is relatively unstable relative to iron oxides and ferromagnesian silicates; it is the latter minerals (particularly hornblende) that dominate cumulate nodules at Savo and drive the chemical differentiation of the suite, with a limited role for plagioclase. This is potentially occurring in a crustal “hot zone”, with major chemical differentiation occurring at depth. Batches of magma ascend periodically, where they are subject to decompression, water saturation and further cooling, resulting in closed-system crystallisation of plagioclase, and ultimately the production of sodic, crystal and feldspar-rich, high-Sr rocks. The sodic and hydrous nature of the parental magmas is interpreted to be the result of partial melting of metasomatised mantle, but radiogenic isotope data (Pb, Sr, Nd) cannot uniquely identify the source of the metasomatic agent. Electronic supplementary material The online version of this article (doi:10.1007/s00410-009-0410-9) contains supplementary material, which is available to authorized users
    corecore