54 research outputs found

    Adiponectin inhibits neutrophil phagocytosis of Escherichia coli by inhibition of PKB and ERK 1/2 MAPK signalling and Mac-1 activation

    Get PDF
    Full length adiponectin is a potent immune modulatory adipokine, impacting upon the actions of several immune cells. Neutrophil oxidative burst has been shown to decrease in response to adiponectin, and we speculated that it could have other effects on neutrophil function. Here we report that adiponectin reduces the phagocytic ability of human neutrophils, decreasing significantly the ingestion of opsonised E. coli by these cells in whole blood (p<0.05) and as isolated neutrophils (p<0.05). We then determined the mechanisms involved. We observed that the activation of Mac-1, the receptor engaged in complement-mediated phagocytosis, was decreased by adiponectin in response to E. coli stimulation. Moreover, treatment of neutrophils with adiponectin prior to incubation with E. coli significantly inhibited signalling through the PI3K/PKB and ERK 1/2 pathways, with a parallel reduction of F-actin content. Studies with pharmacological inhibitors showed that inhibition of PI3K/PKB, but not ERK 1/2 signalling was able to prevent the activation of Mac-1. In conclusion, we propose that adiponectin negatively affects neutrophil phagocytosis, reducing the uptake of E. coli and inhibiting Mac-1 activation, the latter by blockade of the PI3K/PKB signal pathway

    Differential Effects of p38, MAPK, PI3K or Rho Kinase Inhibitors on Bacterial Phagocytosis and Efferocytosis by Macrophages in COPD

    Get PDF
    Pulmonary inflammation and bacterial colonization are central to the pathogenesis of chronic obstructive pulmonary disease (COPD). Defects in macrophage phagocytosis of both bacteria and apoptotic cells contribute to the COPD phenotype. Small molecule inhibitors with anti-inflammatory activity against p38 mitogen activated protein kinases (MAPKs), phosphatidyl-inositol-3 kinase (PI3K) and Rho kinase (ROCK) are being investigated as novel therapeutics in COPD. Concerns exist, however, about off-target effects. We investigated the effect of p38 MAPK inhibitors (VX745 and SCIO469), specific inhibitors of PI3K α (NVS-P13K-2), δ (NVS-P13K-3) or γ (NVS-P13K-5) and a ROCK inhibitor PF4950834 on macrophage phagocytosis, early intracellular killing of bacteria and efferocytosis of apoptotic neutrophils. Alveolar macrophages (AM) obtained from broncho-alveolar lavage (BAL) or monocyte-derived macrophages (MDM) from COPD patients (GOLD stage II/III) enrolled from a well characterized clinical cohort (MRC COPD-MAP consortium) or from healthy ex-smoker controls were studied. Both COPD AM and MDM exhibited lower levels of bacterial phagocytosis (using Streptococcus pneumoniae and non-typeable Haemophilus influenzae) and efferocytosis than healthy controls. None of the inhibitors altered bacterial internalization or early intracellular bacterial killing in AM or MDM. Conversely PF4950834, but not other inhibitors, enhanced efferocytosis in COPD AM and MDM. These results suggest none of these inhibitors are likely to exacerbate phagocytosis-related defects in COPD, while confirming ROCK inhibitors can enhance efferocytosis in COPD

    Tumour necrosis factor-α potentiates CR3-induced respiratory burst by activating p38 MAP kinase in human neutrophils

    No full text
    CR3 and FcγRs are the main receptors involved in the phagocytic process leading to engulfment and killing of microbes by production of reactive oxygen intermediates (ROI) and degranulation. Various inflammatory mediators, such as tumour necrosis factor-α (TNF-α) and lipopolysaccharide (LPS), are known to prime neutrophils leading to increased bactericidal responses, but the underlying mechanism of priming has only been partially elucidated. The purpose of this study was to investigate how TNF-α primes neutrophils for subsequent stimuli via either CR3 or FcγR. The receptors were specifically activated with pansorbins (protein-A-positive Staphylococcus aureus) coated with anti-CR3, anti-FcγRIIa, or anti-FcγRIIIb monoclonal antibody. Activation of neutrophils with these particles resulted in ROI production as measured by chemiluminescence. Anti-CR3 pansorbins induced the most prominent ROI production in neutrophils. TNF-α potentiated the CR3-mediated respiratory burst but had little effect on that mediated by FcγRs. The priming effect of TNF-α on CR3-mediated ROI production is associated with an increased activation of p38 MAPK as well as tyrosine phosphorylation of p72(syk). Pretreatment of neutrophils with the inhibitors for p38 MAPK and p72(syk) markedly suppressed the respiratory burst induced by CR3. Furthermore, TNF-α induced about a three-fold increase in the expression of CR3 in neutrophils, an effect which is blocked by the p38 MAPK inhibitor. Taken together, these results showed that TNF-α potentiates the CR3-mediated respiratory burst in neutrophils not only by triggering a p38 MAPK-dependent up-regulation of CD11b/CD18 but also by modulating the signalling pathways

    Essential role of neutrophils in anti-type II collagen antibody and lipopolysaccharide-induced arthritis

    No full text
    In mice arthritis model induced by anti-type II collagen (CII) antibodies and lipopolysaccharide (LPS), most of cells that infiltrated into the joint space were neutrophils. To investigate the role of neutrophils in the pathogenesis of arthritis, we depleted the neutrophils in vivo by injection of the antibody against Gr-1 expressed mainly on neutrophils. The neutrophil depletion completely inhibited the arthritis development. Furthermore, neutrophil depletion in mice that had already developed arthritis ameliorated the disease. These results showed that neutrophils are indispensable not only for the development, but also for the maintenance of arthritis. Next, we tried to develop arthritis in C5-deficient mice to investigate the involvement of C5a, one of chemotactic factors for neutrophils. C5-deficient mice showed significant reduction in arthritis development in comparison with wild type mice. Injection of pertussis toxin (Ptx) into the mice, which inhibits the signals from the inhibitory G-protein coupled-receptors including the C5a receptor, suppressed the development of arthritis. Furthermore, Ptx also ameliorated the arthritis when injected into mice that had already developed the disease. These results suggest the important role of chemotactic factors involving C5a and inhibitory G-protein (Gi)-coupled receptors not only in the development, but also in the maintenance of arthritis
    • …
    corecore