90 research outputs found
Reduced Cortisol and Metabolic Responses of Thin Ewes to an Acute Cold Challenge in Mid-Pregnancy: Implications for Animal Physiology and Welfare
Background: Low food availability leading to reductions in Body Condition Score (BCS; 0 indicates emaciation and 5 obesity) in sheep often coincides with low temperatures associated with the onset of winter in New Zealand. The ability to adapt to reductions in environmental temperature may be impaired in animals with low BCS, in particular during pregnancy when metabolic demand is higher. Here we assess whether BCS affects a pregnant animal’s ability to cope with cold challenges.
Methods: Eighteen pregnant ewes with a BCS of 2.760.1 were fed to attain low (LBC: BCS2.360.1), medium (MBC: BCS3.260.2) or high BCS (HBC: BCS3.660.2). Shorn ewes were exposed to a 6-h acute cold challenge in a climate-controlled room (wet and windy conditions, 4.460.1uC) in mid-pregnancy. Blood samples were collected during the BCS change phase, acute cold challenge and recovery phase.
Results: During the BCS change phase, plasma glucose and leptin concentrations declined while free fatty acids (FFA) increased in LBC compared to MBC (P,0.01, P,0.01 and P,0.05, respectively) and HBC ewes (P,0.05, P,0.01 and P,0.01, respectively). During the cold challenge, plasma cortisol concentrations were lower in LBC than MBC (P,0.05) and HBC ewes (P,0.05), and FFA and insulin concentrations were lower in LBC than HBC ewes (P,0.05 and P,0.001, respectively). Leptin concentrations declined in MBC and HBC ewes while remaining unchanged in LBC ewes (P,0.01). Glucose concentrations and internal body temperature (Tcore) increased in all treatments, although peak Tcore tended to be higher in HBC ewes (P,0.1). During the recovery phase, T4 concentrations were lower in LBC ewes (P,0.05).
Conclusion: Even though all ewes were able to increase Tcore and mobilize glucose, low BCS animals had considerably reduced cortisol and metabolic responses to a cold challenge in mid-pregnancy, suggesting that their ability to adapt to cold challenges through some of the expected pathways was reduced
Variation in Community Structure across Vertical Intertidal Stress Gradients: How Does It Compare with Horizontal Variation at Different Scales?
In rocky intertidal habitats, the pronounced increase in environmental stress from low to high elevations greatly affects community structure, that is, the combined measure of species identity and their relative abundance. Recent studies have shown that ecological variation also occurs along the coastline at a variety of spatial scales. Little is known, however, on how vertical variation compares with horizontal variation measured at increasing spatial scales (in terms of sampling interval). Because broad-scale processes can generate geographical patterns in community structure, we tested the hypothesis that vertical ecological variation is higher than fine-scale horizontal variation but lower than broad-scale horizontal variation. To test this prediction, we compared the variation in community structure across intertidal elevations on rocky shores of Helgoland Island with independent estimates of horizontal variation measured at the scale of patches (quadrats separated by 10s of cm), sites (quadrats separated by a few m), and shores (quadrats separated by 100s to 1000s of m). The multivariate analyses done on community structure supported our prediction. Specifically, vertical variation was significantly higher than patch- and site-scale horizontal variation but lower than shore-scale horizontal variation. Similar patterns were found for the variation in abundance of foundation taxa such as Fucus spp. and Mastocarpus stellatus, suggesting that the effects of these canopy-forming algae, known to function as ecosystem engineers, may explain part of the observed variability in community structure. Our findings suggest that broad-scale processes affecting species performance increase ecological variability relative to the pervasive fine-scale patchiness already described for marine coasts and the well known variation caused by vertical stress gradients. Our results also indicate that experimental research aiming to understand community structure on marine shores should benefit from applying a multi-scale approach
What is the value of orthodontic treatment?
Orthodontic treatment is as popular as ever. Orthodontists frequently have long lists of people wanting treatment and the cost to the NHS in England was £258m in 2010-2011 (approximately 10% of the NHS annual spend on dentistry). It is important that clinicians and healthcare commissioners constantly question the contribution of interventions towards improving the health of the population. In this article, the authors outline some of the evidence for and against the claims that people with a malocclusion are at a disadvantage compared with those without a malocclusion and that orthodontic treatment has significant health benefits. The authors would like to point out that this is not a comprehensive and systematic review of the entire scientific literature. Rather the evidence is presented in order to stimulate discussion and debate
Diversity of Meiofauna from the 9°50′N East Pacific Rise across a Gradient of Hydrothermal Fluid Emissions
Background: We studied the meiofauna community at deep-sea hydrothermal vents along a gradient of vent fluid emissions in the axial summit trought (AST) of the East Pacific Rise 9 degrees 50'N region. The gradient ranged from extreme high temperatures, high sulfide concentrations, and low pH at sulfide chimneys to ambient deep-sea water conditions on bare basalt. We explore meiofauna diversity and abundance, and discuss its possible underlying ecological and evolutionary processes.
Methodology/Principal Findings: After sampling in five physico-chemically different habitats, the meiofauna was sorted, counted and classified. Abundances were low at all sites. A total of 52 species were identified at vent habitats. The vent community was dominated by hard substrate generalists that also lived on bare basalt at ambient deep-sea temperature in the axial summit trough (AST generalists). Some vent species were restricted to a specific vent habitat (vent specialists), but others occurred over a wide range of physico-chemical conditions (vent generalists). Additionally, 35 species were only found on cold bare basalt (basalt specialists). At vent sites, species richness and diversity clearly increased with decreasing influence of vent fluid emissions from extreme flow sulfide chimney (no fauna), high flow pompei worm (S: 4-7, H-loge': 0.11-0.45), vigorous flow tubeworm (S: 8-23; H-loge': 0.44-2.00) to low flow mussel habitats (S: 28-31; H-loge': 2.34-2.60).
Conclusions/Significance: Our data suggest that with increasing temperature and toxic hydrogen sulfide concentrations and increasing amplitude of variation of these factors, fewer species are able to cope with these extreme conditions. This results in less diverse communities in more extreme habitats. The finding of many species being present at sites with and without vent fluid emissions points to a non endemic deep-sea hydrothermal vent meiofaunal community. This is in contrast to a mostly endemic macrofauna but similar to what is known for meiofauna from shallow-water vents
Mathematics and biology: a Kantian view on the history of pattern formation theory
Driesch’s statement, made around 1900, that the physics and chemistry of his day were unable to explain self-regulation during embryogenesis was correct and could be extended until the year 1972. The emergence of theories of self-organisation required progress in several areas including chemistry, physics, computing and cybernetics. Two parallel lines of development can be distinguished which both culminated in the early 1970s. Firstly, physicochemical theories of self-organisation arose from theoretical (Lotka 1910–1920) and experimental work (Bray 1920; Belousov 1951) on chemical oscillations. However, this research area gained broader acceptance only after thermodynamics was extended to systems far from equilibrium (1922–1967) and the mechanism of the prime example for a chemical oscillator, the Belousov–Zhabotinski reaction, was deciphered in the early 1970s. Secondly, biological theories of self-organisation were rooted in the intellectual environment of artificial intelligence and cybernetics. Turing wrote his The chemical basis of morphogenesis (1952) after working on the construction of one of the first electronic computers. Likewise, Gierer and Meinhardt’s theory of local activation and lateral inhibition (1972) was influenced by ideas from cybernetics. The Gierer–Meinhardt theory provided an explanation for the first time of both spontaneous formation of spatial order and of self-regulation that proved to be extremely successful in elucidating a wide range of patterning processes. With the advent of developmental genetics in the 1980s, detailed molecular and functional data became available for complex developmental processes, allowing a new generation of data-driven theoretical approaches. Three examples of such approaches will be discussed. The successes and limitations of mathematical pattern formation theory throughout its history suggest a picture of the organism, which has structural similarity to views of the organic world held by the philosopher Immanuel Kant at the end of the eighteenth century
- …