16 research outputs found

    Selenium Toxicity to Honey Bee (Apis mellifera L.) Pollinators: Effects on Behaviors and Survival

    Get PDF
    We know very little about how soil-borne pollutants such as selenium (Se) can impact pollinators, even though Se has contaminated soils and plants in areas where insect pollination can be critical to the functioning of both agricultural and natural ecosystems. Se can be biotransferred throughout the food web, but few studies have examined its effects on the insects that feed on Se-accumulating plants, particularly pollinators. In laboratory bioassays, we used proboscis extension reflex (PER) and taste perception to determine if the presence of Se affected the gustatory response of honey bee (Apis mellifera L., Hymenoptera: Apidae) foragers. Antennae and proboscises were stimulated with both organic (selenomethionine) and inorganic (selenate) forms of Se that commonly occur in Se-accumulating plants. Methionine was also tested. Each compound was dissolved in 1 M sucrose at 5 concentrations, with sucrose alone as a control. Antennal stimulation with selenomethionine and methionine reduced PER at higher concentrations. Selenate did not reduce gustatory behaviors. Two hours after being fed the treatments, bees were tested for sucrose response threshold. Bees fed selenate responded less to sucrose stimulation. Mortality was higher in bees chronically dosed with selenate compared with a single dose. Selenomethionine did not increase mortality except at the highest concentration. Methionine did not significantly impact survival. Our study has shown that bees fed selenate were less responsive to sucrose, which may lead to a reduction in incoming floral resources needed to support coworkers and larvae in the field. If honey bees forage on nectar containing Se (particularly selenate), reductions in population numbers may occur due to direct toxicity. Given that honey bees are willing to consume food resources containing Se and may not avoid Se compounds in the plant tissues on which they are foraging, they may suffer similar adverse effects as seen in other insect guilds

    Root Herbivore Effects on Aboveground Multitrophic Interactions: Patterns, Processes and Mechanisms

    Get PDF
    In terrestrial food webs, the study of multitrophic interactions traditionally has focused on organisms that share a common domain, mainly above ground. In the last two decades, it has become clear that to further understand multitrophic interactions, the barrier between the belowground and aboveground domains has to be crossed. Belowground organisms that are intimately associated with the roots of terrestrial plants can influence the levels of primary and secondary chemistry and biomass of aboveground plant parts. These changes, in turn, influence the growth, development, and survival of aboveground insect herbivores. The discovery that soil organisms, which are usually out of sight and out of mind, can affect plant-herbivore interactions aboveground raised the question if and how higher trophic level organisms, such as carnivores, could be influenced. At present, the study of above-belowground interactions is evolving from interactions between organisms directly associated with the plant roots and shoots (e.g., root feeders - plant - foliar herbivores) to interactions involving members of higher trophic levels (e.g., parasitoids), as well as non-herbivorous organisms (e.g., decomposers, symbiotic plant mutualists, and pollinators). This multitrophic approach linking above- and belowground food webs aims at addressing interactions between plants, herbivores, and carnivores in a more realistic community setting. The ultimate goal is to understand the ecology and evolution of species in communities and, ultimately how community interactions contribute to the functioning of terrestrial ecosystems. Here, we summarize studies on the effects of root feeders on aboveground insect herbivores and parasitoids and discuss if there are common trends. We discuss the mechanisms that have been reported to mediate these effects, from changes in concentrations of plant nutritional quality and secondary chemistry to defense signaling. Finally, we discuss how the traditional framework of fixed paired combinations of root- and shoot-related organisms feeding on a common plant can be transformed into a more dynamic and realistic framework that incorporates community variation in species, densities, space and time, in order to gain further insight in this exciting and rapidly developing field

    Chronic coral consumption by butterflyfishes

    No full text
    Interactions between predators and prey organisms are of fundamental importance to ecological communities. While the ecological impact that grazing predators can have in terrestrial and temperate marine systems are well established, the importance of coral grazers on tropical reefs has rarely been considered. In this study we estimate the biomass of coral tissue consumed by four prominent species of corallivorous butterflyfishes. Sub-adult butterflyfishes (60-70mm, 6-11g) remove between 0.6 and 0.9g of live coral tissue per day, while larger adults (>110mm, ~40-50g) remove between 1.5 and 3g of coral tissue each day. These individual consumption rates correspond to the population of coral-feeding butterflyfishes at three exposed reef crest habitats at Lizard Island, Great Barrier Reef consuming between 14.6g (±2.0) and 19.6g (±3.9).200m-2.day-1 of coral tissue. When standardised to the biomass of butterflyfishes present, a combined reef wide removal rate of 4.2g (±1.2) of coral tissue is consumed per 200m-2.kg-1 of coral-feeding butterflyfishes. The quantity of coral tissue removed by these predators is considerably larger than previously expected and indicates that coral-grazers are likely to play an important role in the transfer of energy fixed by corals to higher consumers. Chronic coral consumption by butterflyfishes is expected to exact a large energetic cost upon prey corals and contribute to an increased rate of coral loss on reefs already threatened by anthropogenic pressure and ongoing climate change
    corecore