96 research outputs found

    Effects of tidal-forcing variations on tidal properties along a narrow convergent estuary

    Get PDF
    A 1D analytical framework is implemented in a narrow convergent estuary that is 78 km in length (the Guadiana, Southern Iberia) to evaluate the tidal dynamics along the channel, including the effects of neap-spring amplitude variations at the mouth. The close match between the observations (damping from the mouth to ∼ 30 km, shoaling upstream) and outputs from semi-closed channel solutions indicates that the M2 tide is reflected at the estuary head. The model is used to determine the contribution of reflection to the dynamics of the propagating wave. This contribution is mainly confined to the upper one third of the estuary. The relatively constant mean wave height along the channel (< 10% variations) partly results from reflection effects that also modify significantly the wave celerity and the phase difference between tidal velocity and elevation (contradicting the definition of an “ideal” estuary). Furthermore, from the mouth to ∼ 50 km, the variable friction experienced by the incident wave at neap and spring tides produces wave shoaling and damping, respectively. As a result, the wave celerity is largest at neap tide along this lower reach, although the mean water level is highest in spring. Overall, the presented analytical framework is useful for describing the main tidal properties along estuaries considering various forcings (amplitude, period) at the estuary mouth and the proposed method could be applicable to other estuaries with small tidal amplitude to depth ratio and negligible river discharge.info:eu-repo/semantics/publishedVersio

    Reticular synthesis and the design of new materials

    Full text link
    The long-standing challenge of designing and constructing new crystalline solid-state materials from molecular building blocks is just beginning to be addressed with success. A conceptual approach that requires the use of secondary building units to direct the assembly of ordered frameworks epitomizes this process: we call this approach reticular synthesis. This chemistry has yielded materials designed to have predetermined structures, compositions and properties. In particular, highly porous frameworks held together by strong metal-oxygen-carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62718/1/nature01650.pd

    Two Distinct Integrin-Mediated Mechanisms Contribute to Apical Lumen Formation in Epithelial Cells

    Get PDF
    Background: Formation of apical compartments underlies the morphogenesis of most epithelial organs during development. The extracellular matrix (ECM), particularly the basement membrane (BM), plays an important role in orienting the apico-basal polarity and thereby the positioning of apical lumens. Integrins have been recognized as essential mediators of matrix-derived polarity signals. The importance of b1-integrins in epithelial polarization is well established but the significance of the accompanying a-subunits have not been analyzed in detail. Principal Findings: Here we demonstrate that two distinct integrin-dependent pathways regulate formation of apical lumens to ensure robust apical membrane biogenesis under different microenvironmental conditions; 1) a2b1- and a6b4integrins were required to establish a basal cue that depends on Rac1-activity and guides apico-basal cell polarization. 2) a3b1-integrins were implicated in positioning of mitotic spindles in cysts, a process that is essential for Cdc42-driven epithelial hollowing. Significance: Identification of the separate processes driven by particular integrin receptors clarifies the functional hierarchies between the different integrins co-expressed in epithelial cells and provides valuable insight into the complexity of cell-ECM interactions thereby guiding future studies addressing the molecular basis of epithelial morphogenesis durin

    Environmental controls, oceanography and population dynamics of pathogens and harmful algal blooms: connecting sources to human exposure

    Get PDF
    © 2008 Author et al. This is an open access article distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Health 7 (2008): S5, doi:10.1186/1476-069X-7-S2-S5.Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs). Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges.The authors acknowledge the financial support for the NSF/NIEHS and NOAA Centers for Oceans and Human Healt

    Osteopathology and selenium deficiency co-occurring in a population of endangered Patagonian huemul (Hippocamelus bisulcus)

    Get PDF
    Background: About 1,000 endangered Patagonian huemul deer (Hippocamelus bisulcus) remain in Chile and 350-500 in Argentina. Most groups (&gt;100) are not recovering, and prevalence of osteopathology in Argentina was at least 57%. Here I describe relevant cases of osteopathology from a Chilean population which, however, recently also provided data on trace mineral status, supporting the initial hypothesis that nutrition may be a primary etiologic factor. Additionally, recent data on bone chemical composition of Argentine cases and soil analyses are discussed. Results: Fluoride levels in Argentine cases with osteopathology were low and fluorosis was discarded as an etiological factor. Selenium deficiency occurred in 73% of huemul from the Chilean population which exhibited several cases with osteopathology. The pathophysiognomy included extensive erosion; tooth loss;  porosification; perforations of palate, maxillar and mandibular bone with frequent exposure of tooth roots; and fractured mandibula. Areas currently used by remaining huemul have mainly acidic volcanic soils, which reduces selenium bioavailability: mean soil selenium levels from areas typically used by extant huemul were very deficient (0.19 ppm), corroborating documented overt selenium deficiency in local livestock and plants. The area of extant huemul is known to result in primary iodine deficiency in livestock which is aggravated by selenium deficiency. Conclusions: Currently the most parsimonious explanation for frequent osteopathology and lack of numerical recovery are the combined effects of selenium and iodine deficiencies based on: osteopathology in a population of selenium deficient huemul; selenium deficient livestock, plants and soils; acidic soils; and regional primary iodine deficiency. The nexus between mineral nutrition and population dynamics of huemul may be due to constraints on their movements to fertile lowlands, including the elimination of historic migratory traditions, and concomitant elimination of source populations

    The dynamics of expanding mangroves in New Zealand

    Get PDF
    In contrast to the global trend of mangrove decline, New Zealand mangroves are rapidly expanding, facilitated by elevated sediment inputs in coastal waters as a consequence of large-scale land use changes following European settlement. New Zealand mangroves are at the southern limit of the global mangrove extent, which limits the tree height of Avicennia marina var. australasica, the only mangrove species present. Mangroves in New Zealand thrive in the sheltered environments of infilling drowned river valleys with abundant supply of fine terrigenous sediments, showing various stages of mangrove succession and expansion dynamics. Bio-physical interactions and carbon dynamics in these expanding temperate mangrove systems show similarities to, but also differ from those in tropical mangrove forests, for instance due to the limited height and complexity of the mangrove communities. Likewise, ecosystem services provided by New Zealand mangroves deviate from those offered by tropical mangroves. In particular, the association of mangrove expansion with the accumulation of (the increased supply of) fine sediments and the consequent change of estuarine ecosystems, has provoked a negative perception of mangrove expansion and subsequently led to mangrove clearance. Over recent decades, a body of knowledge has been developed regarding the planning and decision making relating to mangrove removal, yet there are still effects that are unknown, for example with respect to the post-clearance recovery of the original sandflat ecosystems. In this chapter we discuss the dynamics of New Zealand’s expanding mangroves from a range of viewpoints, with the aim of elucidating the possible contributions of expanding mangroves to coastal ecosystem services, now and in the future. This chapter also reviews current policies and practice regarding mangrove removal in New Zealand and addresses the (un)known effects of mangrove clearance. These combined insights may contribute to the development of integrated coastal management strategies that recognise the full potential of expanding mangrove ecosystems
    corecore