369 research outputs found

    Endophytic microbes and their diverse beneficial aspects in various sectors: A critical insight

    Get PDF
    Endophytes are ubiquitous and grow in plant tissues without causing any harmful effects to the host. They include different groups of microorganisms such as bacteria, fungi and actinomycetes. Along with the host plants, the existing endophytes also co-evolve after a long relationship between them. Host plant-endophyte interaction is similar to that of plant growth promoting microbes as they induce the growth of the host plant and increase resilience against biotic and abiotic stresses. The interaction of plant endophytes at the molecular level and the effect of endophytes on host gene expression is a new field of study and are still rarely explored. Endophytes act as a promising resource of many invaluable bioactive secondary metabolites. Some of these bioactive compounds include alkaloids, polyphenols, sterols, xanthones, terpenoids, flavones, coumarins, polyketides, quinones, saponins, tannins, benzopyrones, dibenzofurans. These secondary metabolites are beneficial for agriculture, industrial and pharmacological purposes. As endophytes have beneficial effects in sustainable agriculture, plant disease management, pharmaceuticals, industry and environmental management in an eco-friendly way, thus improving the strategy of application of endophytes as biological agents in every aspect of our life is a very challenging field of research. Our aim in this present review is to focus on plant-endophyte interactions and their various dimensions in order to address some future possibilities for expediting the bioactive secondary metabolite production

    Single cell fertilizer (SCF): Evidence to prove that bio-molecules are potent nutrient for plant growth

    Get PDF
    Fertilizers of various kinds are used for the cultivation of crop plants for hyper production of plant based food materials. The study used bio-molecules made in a bacterial cell. The experimental results showed tremendous effect on plant growth. These cellular molecules were made by treating the bacterial cells with lysozyme and protenase K. The wet/weight was increased in multiple folds compared to that of control sets. The fold of increase was 4.79 for rice, 2.77 for wheat, 1.89 for gram and 1.89 for pea when bacterial cellular molecules were used as fertilizer

    Deciphering Universal Extra Dimension from the top quark signals at the CERN LHC

    Get PDF
    Models based on Universal Extra Dimensions predict Kaluza-Klein (KK) excitations of all Standard Model (SM) particles. We examine the pair production of KK excitations of top- and bottom-quarks at the Large Hadron Collider. Once produced, the KK top/bottom quarks can decay to bb-quarks, leptons and the lightest KK-particle, γ1\gamma_1, resulting in 2 bb-jets, two opposite sign leptons and missing transverse momentum, thereby mimicing top-pair production. We show that, with a proper choice of kinematic cuts, an integrated luminosity of 100 fb1^{-1} would allow a discovery for an inverse radius upto R1=750R^{-1} = 750 GeV.Comment: 18 pages, 14 figures, Accepted for publication in JHE

    Constraining Bosonic Supersymmetry from Higgs results and 8 TeV ATLAS multi-jets plus missing energy data

    Full text link
    The collider phenomenology of models with Universal Extra Dimensions (UED) is surprisingly similar to that of supersymmetric (SUSY) scenarios. For each level-1 bosonic (fermionic) Kaluza-Klein (KK) state, there is a fermionic (bosonic) analog in SUSY and thus UED scenarios are often known as bosonic supersymmetry. The minimal version of UED (mUED) gives rise to a quasi-degenerate particle spectrum at each KK-level and thus, can not explain the enhanced Higgs to diphoton decay rate hinted by the ATLAS collaboration of the Large Hadron Collider (LHC) experiment. However, in the non-minimal version of the UED (nmUED) model, the enhanced Higgs to diphoton decay rate can be easily explained via the suitable choice of boundary localized kinetic (BLK) terms for higher dimensional fermions and gauge bosons. BLK terms remove the degeneracy in the KK mass spectrum and thus, pair production of level-1 quarks and gluons at the LHC gives rise to hard jets, leptons and large missing energy in the final state. These final states are studied in details by the ATLAS and CMS collaborations in the context of SUSY scenarios. We find that the absence of any significant deviation of the data from the Standard Model (SM) prediction puts a lower bound of about 2.1 TeV on equal mass excited quarks and gluons.Comment: 19 page

    Discrimination of low missing energy look-alikes at the LHC

    Full text link
    The problem of discriminating possible scenarios of TeV scale new physics with large missing energy signature at the Large Hadron Collider (LHC) has received some attention in the recent past. We consider the complementary, and yet unexplored, case of theories predicting much softer missing energy spectra. As there is enough scope for such models to fake each other by having similar final states at the LHC, we have outlined a systematic method based on a combination of different kinematic features which can be used to distinguish among different possibilities. These features often trace back to the underlying mass spectrum and the spins of the new particles present in these models. As examples of "low missing energy look-alikes", we consider Supersymmetry with R-parity violation, Universal Extra Dimensions with both KK-parity conserved and KK-parity violated and the Littlest Higgs model with T-parity violated by the Wess-Zumino-Witten anomaly term. Through detailed Monte Carlo analysis of the four and higher lepton final states predicted by these models, we show that the models in their minimal forms may be distinguished at the LHC, while non-minimal variations can always leave scope for further confusion. We find that, for strongly interacting new particle mass-scale ~600 GeV (1 TeV), the simplest versions of the different theories can be discriminated at the LHC running at sqrt{s}=14 TeV within an integrated luminosity of 5 (30) fb^{-1}.Comment: 40 pages, 10 figures; v2: Further discussions, analysis and one figure added, ordering of certain sections changed, minor modifications in the abstract, version as published in JHE

    Recommendations to improve physical activity among teenagers- A qualitative study with ethnic minority and European teenagers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To understand the key challenges and explore recommendations from teenagers to promote physical activity with a focus on ethnic minority children.</p> <p>Methods</p> <p>Focus groups with teenagers aged 16-18 of Bangladeshi, Somali or Welsh descent attending a participating school in South Wales, UK. There were seventy four participants (18 Somali, 24 Bangladeshi and 32 Welsh children) divided into 12 focus groups.</p> <p>Results</p> <p>The boys were more positive about the benefits of exercise than the girls and felt there were not enough facilities or enough opportunity for unsupervised activity. The girls felt there was a lack of support to exercise from their family. All the children felt that attitudes to activity for teenagers needed to change, so that there was more family and community support for girls to be active and for boys to have freedom to do activities they wanted without formal supervision. It was felt that older children from all ethnic backgrounds should be involved more in delivering activities and schools needs to provide more frequent and a wider range of activities.</p> <p>Conclusions</p> <p>This study takes a child-focused approach to explore how interventions should be designed to promote physical activity in youth. Interventions need to improve access to facilities but also counteract attitudes that teenagers should be studying or working and not 'hanging about' playing with friends. Thus, the value of activity for teenagers needs to be promoted not just among the teenagers but with their teachers, parents and members of the community.</p
    corecore