94 research outputs found
Exacerbation of hepatitis C induced subclinical hypoadrenalism by Interferon-alpha2beta: A case report
Adrenal disease is an uncommon manifestation of hepatitis C infection and its related treatment regimen. This is a case of subclinical hypoadrenalism, probably induced by hepatitis C infection and further exacerbated by interferon-α2β and Ribavirin therapy. The adrenal deterioration during the treatment course was observed closely with 24-hour salivary profiles and 250 μg adrenocorticotropin stimulation tests using parallel serum and salivary cortisol concentrations. A number of possible pathogenic mechanisms are discussed, and the controversy over its management is emphasized
The diagnostic value of liver biopsy
BACKGROUND: Since the introduction of molecular diagnostic tools such as markers for hepatitis C and different autoimmune diseases, liver biopsy is thought to be useful mainly for staging but not for diagnostic purposes. The aim was to review the liver biopsies for 5 years after introduction of testing for hepatitis C, in order to evaluate what diagnostic insights – if any – remain after serologic testing. METHODS: Retrospective review of all liver biopsies performed between 1.1.1995 and 31.12.1999 at an academic outpatient hepatology department. The diagnoses suspected in the biopsy note were compared with the final diagnosis arrived at during a joint meeting with the responsible clinicians and a hepatopathologist. RESULTS: In 365 patients, 411 diagnoses were carried out before biopsy. 84.4 % were confirmed by biopsy but in 8.8 %, 6.8 % and 10.5 % the diagnosis was specified, changed or a diagnosis added, respectively. Additional diagnoses of clinical relevance were unrecognized biliary obstruction and additional alcoholic liver disease in patients with chronic hepatitis C. Liver biopsy led to change in management for 12.1 % of patients. CONCLUSION: Even in the era of advanced virological, immunological and molecular genetic testing, liver biopsy remains a useful diagnostic tool. The yield is particularly high in marker negative patients but also in patients with a clear-cut prebiopsy diagnosis, liver biopsy can lead to changes in patient management
Modulations of cell cycle checkpoints during HCV associated disease
Background
Impaired proliferation of hepatocytes has been reported in chronic Hepatitis C virus infection. Considering the fundamental role played by cell cycle proteins in controlling cell proliferation, altered regulation of these proteins could significantly contribute to HCV disease progression and subsequent hepatocellular carcinoma (HCC). This study aimed to identify the alterations in cell cycle genes expression with respect to early and advanced disease of chronic HCV infection. Methods
Using freshly frozen liver biopsies, mRNA levels of 84 cell cycle genes in pooled RNA samples from patients with early or advanced fibrosis of chronic HCV infection were studied. To associate mRNA levels with respective protein levels, four genes (p27, p15, KNTC1 and MAD2L1) with significant changes in mRNA levels (\u3e 2-fold, p-value \u3c 0.05) were selected, and their protein expressions were examined in the liver biopsies of 38 chronic hepatitis C patients. Results
In the early fibrosis group, increased mRNA levels of cell proliferation genes as well as cell cycle inhibitor genes were observed. In the advanced fibrosis group, DNA damage response genes were up-regulated while those associated with chromosomal stability were down-regulated. Increased expression of CDK inhibitor protein p27 was consistent with its mRNA level detected in early group while the same was found to be negatively associated with liver fibrosis. CDK inhibitor protein p15 was highly expressed in both early and advanced group, but showed no correlation with fibrosis. Among the mitotic checkpoint regulators, expression of KNTC1 was significantly reduced in advanced group while MAD2L1 showed a non-significant decrease. Conclusion
Collectively these results are suggestive of a disrupted cell cycle regulation in HCV-infected liver. The information presented here highlights the potential of identified proteins as predictive factors to identify patients with high risk of cell transformation and HCC development
Prediction of Liver-Related Events Using Fibroscan in Chronic Hepatitis B Patients Showing Advanced Liver Fibrosis
Liver stiffness measurement (LSM) using transient elastography (FibroScan®) can assess liver fibrosis noninvasively. This study investigated whether LSM can predict the development of liver-related events (LREs) in chronic hepatitis B (CHB) patients showing histologically advanced liver fibrosis.Between March 2006 and April 2010, 128 CHB patients with who underwent LSM and liver biopsy (LB) before starting nucleot(s)ide analogues and showed histologically advanced fibrosis (≥F3) with a high viral loads [HBV DNA ≥2,000 IU/mL] were enrolled. All patients were followed regularly to detect LRE development, including hepatic decompensation (variceal bleeding, ascites, hepatic encephalopathy, spontaneous bacterial peritonitis, hepatorenal syndrome) and hepatocellular carcinoma (HCC).The mean age of the patient (72 men, 56 women) was 52.2 years. During the median follow-up period [median 27.8 (12.6-61.6) months], LREs developed in 19 (14.8%) patients (five with hepatic decompensation, 13 with HCC, one with both). Together with age, multivariate analysis identified LSM as an independent predictor of LRE development [P<0.044; hazard ratio (HR), 1.038; 95% confidence interval (CI), 1.002-1.081]. When the study population was stratified into two groups using the optimal cutoff value (19 kPa), which maximized the sum of sensitivity (61.1%) and specificity (86.2%) from a time-dependent receiver operating characteristic curve, patients with LSM>19 kPa were at significantly greater risk than those with LSM≤19 kPa for LRE development (HR, 7.176; 95% CI, 2.257-22.812; P = 0.001).LSM can be a useful predictor of LRE development in CHB patients showing histologically advanced liver fibrosis
Progression of Biopsy-Measured Liver Fibrosis in Untreated Patients with Hepatitis C Infection: Non-Markov Multistate Model Analysis
BACKGROUND: Fibrosis stages from liver biopsies reflect liver damage from hepatitis C infection, but analysis is challenging due to their ordered but non-numeric nature, infrequent measurement, misclassification, and unknown infection times. METHODS: We used a non-Markov multistate model, accounting for misclassification, with multiple imputation of unknown infection times, applied to 1062 participants of whom 159 had multiple biopsies. Odds ratios (OR) quantified the estimated effects of covariates on progression risk at any given time. RESULTS: Models estimated that progression risk decreased the more time participants had already spent in the current stage, African American race was protective (OR 0.75, 95% confidence interval 0.60 to 0.95, p = 0.018), and older current age increased risk (OR 1.33 per decade, 95% confidence interval 1.15 to 1.54, p = 0.0002). When controlled for current age, older age at infection did not appear to increase risk (OR 0.92 per decade, 95% confidence interval 0.47 to 1.79, p = 0.80). There was a suggestion that co-infection with human immunodeficiency virus increased risk of progression in the era of highly active antiretroviral treatment beginning in 1996 (OR 2.1, 95% confidence interval 0.97 to 4.4, p = 0.059). Other examined risk factors may influence progression risk, but evidence for or against this was weak due to wide confidence intervals. The main results were essentially unchanged using different assumed misclassification rates or imputation of age of infection. DISCUSSION: The analysis avoided problems inherent in simpler methods, supported the previously suspected protective effect of African American race, and suggested that current age rather than age of infection increases risk. Decreasing risk of progression with longer time already spent in a stage was also previously found for post-transplant progression. This could reflect varying disease activity, with recent progression indicating active disease and high risk, while longer time already spent in a stage indicates quiescent disease and low risk
Diagnostic accuracy of the aspartate aminotransferase-to-platelet ratio index for the prediction of hepatitis B-related fibrosis: a leading meta-analysis
<p>Abstract</p> <p>Background</p> <p>The aspartate aminotransferase-to-platelet ratio index (APRI), a tool with limited expense and widespread availability, is a promising noninvasive alternative to liver biopsy for detecting hepatic fibrosis. The objective of this study was to systematically review the performance of the APRI in predicting significant fibrosis and cirrhosis in hepatitis B-related fibrosis.</p> <p>Methods</p> <p>Areas under summary receiver operating characteristic curves (AUROC), sensitivity and specificity were used to examine the accuracy of the APRI for the diagnosis of hepatitis B-related significant fibrosis and cirrhosis. Heterogeneity was explored using meta-regression.</p> <p>Results</p> <p>Nine studies were included in this meta-analysis (n = 1,798). Prevalence of significant fibrosis and cirrhosis were 53.1% and 13.5%, respectively. The summary AUCs of the APRI for significant fibrosis and cirrhosis were 0.79 and 0.75, respectively. For significant fibrosis, an APRI threshold of 0.5 was 84% sensitive and 41% specific. At the cutoff of 1.5, the summary sensitivity and specificity were 49% and 84%, respectively. For cirrhosis, an APRI threshold of 1.0-1.5 was 54% sensitive and 78% specific. At the cutoff of 2.0, the summary sensitivity and specificity were 28% and 87%, respectively. Meta-regression analysis indicated that the APRI accuracy for both significant fibrosis and cirrhosis was affected by histological classification systems, but not influenced by the interval between Biopsy & APRI or blind biopsy.</p> <p>Conclusion</p> <p>Our meta-analysis suggests that APRI show limited value in identifying hepatitis B-related significant fibrosis and cirrhosis.</p
Donepezil, Anti-Alzheimer's Disease Drug, Prevents Cardiac Rupture during Acute Phase of Myocardial Infarction in Mice
Background: We have previously demonstrated that the chronic intervention in the cholinergic system by donepezil, an acetylcholinesterase inhibitor, plays a beneficial role in suppressing long-term cardiac remodeling after myocardial infarction (MI). In comparison with such a chronic effect, however, the acute effect of donepezil during an acute phase of MI remains unclear. Noticing recent findings of a cholinergic mechanism for anti-inflammatory actions, we tested the hypothesis that donepezil attenuates an acute inflammatory tissue injury following MI. Methods and Results: In isolated and activated macrophages, donepezil significantly reduced intra- and extracellular matrix metalloproteinase-9 (MMP-9). In mice with MI, despite the comparable values of heart rate and blood pressure, the donepezil-treated group showed a significantly lower incidence of cardiac rupture than the untreated group during the acute phase of MI. Immunohistochemistry revealed that MMP-9 was localized at the infarct area where a large number of inflammatory cells including macrophages infiltrated, and the expression and the enzymatic activity of MMP-9 at the left ventricular infarct area was significantly reduced in the donepezil-treated group. Conclusion: The present study suggests that donepezil inhibits the MMP-9-related acute inflammatory tissue injury in the infarcted myocardium, thereby reduces the risk of left ventricular free wall rupture during the acute phase of MI
Genomic Analysis Reveals a Potential Role for Cell Cycle Perturbation in HCV-Mediated Apoptosis of Cultured Hepatocytes
The mechanisms of liver injury associated with chronic HCV infection, as well as the individual roles of both viral and host factors, are not clearly defined. However, it is becoming increasingly clear that direct cytopathic effects, in addition to immune-mediated processes, play an important role in liver injury. Gene expression profiling during multiple time-points of acute HCV infection of cultured Huh-7.5 cells was performed to gain insight into the cellular mechanism of HCV-associated cytopathic effect. Maximal induction of cell-death–related genes and appearance of activated caspase-3 in HCV-infected cells coincided with peak viral replication, suggesting a link between viral load and apoptosis. Gene ontology analysis revealed that many of the cell-death genes function to induce apoptosis in response to cell cycle arrest. Labeling of dividing cells in culture followed by flow cytometry also demonstrated the presence of significantly fewer cells in S-phase in HCV-infected relative to mock cultures, suggesting HCV infection is associated with delayed cell cycle progression. Regulation of numerous genes involved in anti-oxidative stress response and TGF-β1 signaling suggest these as possible causes of delayed cell cycle progression. Significantly, a subset of cell-death genes regulated during in vitro HCV infection was similarly regulated specifically in liver tissue from a cohort of HCV-infected liver transplant patients with rapidly progressive fibrosis. Collectively, these data suggest that HCV mediates direct cytopathic effects through deregulation of the cell cycle and that this process may contribute to liver disease progression. This in vitro system could be utilized to further define the cellular mechanism of this perturbation
HCV Induces Oxidative and ER Stress, and Sensitizes Infected Cells to Apoptosis in SCID/Alb-uPA Mice
Hepatitis C virus (HCV) is a blood-borne pathogen and a major cause of liver disease worldwide. Gene expression profiling was used to characterize the transcriptional response to HCV H77c infection. Evidence is presented for activation of innate antiviral signaling pathways as well as induction of lipid metabolism genes, which may contribute to oxidative stress. We also found that infection of chimeric SCID/Alb-uPA mice by HCV led to signs of hepatocyte damage and apoptosis, which in patients plays a role in activation of stellate cells, recruitment of macrophages, and the subsequent development of fibrosis. Infection of chimeric mice with HCV H77c also led an inflammatory response characterized by infiltration of monocytes and macrophages. There was increased apoptosis in HCV-infected human hepatocytes in H77c-infected mice but not in mice inoculated with a replication incompetent H77c mutant. Moreover, TUNEL reactivity was restricted to HCV-infected hepatocytes, but an increase in FAS expression was not. To gain insight into the factors contributing specific apoptosis of HCV infected cells, immunohistological and confocal microscopy using antibodies for key apoptotic mediators was done. We found that the ER chaperone BiP/GRP78 was increased in HCV-infected cells as was activated BAX, but the activator of ER stress–mediated apoptosis CHOP was not. We found that overall levels of NF-κB and BCL-xL were increased by infection; however, within an infected liver, comparison of infected cells to uninfected cells indicated both NF-κB and BCL-xL were decreased in HCV-infected cells. We conclude that HCV contributes to hepatocyte damage and apoptosis by inducing stress and pro-apoptotic BAX while preventing the induction of anti-apoptotic NF-κB and BCL-xL, thus sensitizing hepatocytes to apoptosis
- …