144 research outputs found

    Biodiversity and ecosystem function in soil

    Get PDF
    1. Soils are one of the last great frontiers for biodiversity research and are home to an extraordinary range of microbial and animal groups. Biological activities in soils drive many of the key ecosystem processes that govern the global system, especially in the cycling of elements such as carbon, nitrogen and phosphorus. 2. We cannot currently make firm statements about the scale of biodiversity in soils, or about the roles played by soil organisms in the transformations of organic materials that underlie those cycles. The recent UK Soil Biodiversity Programme (SBP) has brought a unique concentration of researchers to bear on a single soil in Scotland, and has generated a large amount of data concerning biodiversity, carbon flux and resilience in the soil ecosystem. 3. One of the key discoveries of the SBP was the extreme diversity of small organisms: researchers in the programme identified over 100 species of bacteria, 350 protozoa, 140 nematodes and 24 distinct types of arbuscular mycorrhizal fungi. Statistical analysis of these results suggests a much greater 'hidden diversity'. In contrast, there was no unusual richness in other organisms, such as higher fungi, mites, collembola and annelids. 4. Stable-isotope (C-13) technology was used to measure carbon fluxes and map the path of carbon through the food web. A novel finding was the rapidity with which carbon moves through the soil biota, revealing an extraordinarily dynamic soil ecosystem. 5. The combination of taxonomic diversity and rapid carbon flux makes the soil ecosystem highly resistant to perturbation through either changing soil structure or removing selected groups of organisms

    Impact of Matric Potential and Pore Size Distribution on Growth Dynamics of Filamentous and Non-Filamentous Soil Bacteria

    Get PDF
    The filamentous growth form is an important strategy for soil microbes to bridge air-filled pores in unsaturated soils. In particular, fungi perform better than bacteria in soils during drought, a property that has been ascribed to the hyphal growth form of fungi. However, it is unknown if, and to what extent, filamentous bacteria may also display similar advantages over non-filamentous bacteria in soils with low hydraulic connectivity. In addition to allowing for microbial interactions and competition across connected micro-sites, water films also facilitate the motility of non-filamentous bacteria. To examine these issues, we constructed and characterized a series of quartz sand microcosms differing in matric potential and pore size distribution and, consequently, in connection of micro-habitats via water films. Our sand microcosms were used to examine the individual and competitive responses of a filamentous bacterium (Streptomyces atratus) and a motile rod-shaped bacterium (Bacillus weihenstephanensis) to differences in pore sizes and matric potential. The Bacillus strain had an initial advantage in all sand microcosms, which could be attributed to its faster growth rate. At later stages of the incubation, Streptomyces became dominant in microcosms with low connectivity (coarse pores and dry conditions). These data, combined with information on bacterial motility (expansion potential) across a range of pore-size and moisture conditions, suggest that, like their much larger fungal counterparts, filamentous bacteria also use this growth form to facilitate growth and expansion under conditions of low hydraulic conductivity. The sand microcosm system developed and used in this study allowed for precise manipulation of hydraulic properties and pore size distribution, thereby providing a useful approach for future examinations of how these properties influence the composition, diversity and function of soil-borne microbial communities

    Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea : a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids

    Get PDF
    Author Posting. © Blackwell, 2007. This is the author's version of the work. It is posted here by permission of Blackwell for personal use, not for redistribution. The definitive version was published in Environmental Microbiology 9 (2007): 1001-1016, doi:10.1111/j.1462-2920.2006.01227.x.Within the upper 400 m at western, central, and eastern stations in the world’s largest stratified basin, the Black Sea, we studied the qualitative and quantitative distribution of putative nitrifying Archaea based on their genetic markers (16S rDNA, amoA encoding for the alfa-subunit of archaeal ammonia monooxygenase), and crenarchaeol, the specific glycerol diphytanyl glycerol tetraether (GDGT) of pelagic Crenarchaeota within the Group I.1a. Marine Crenarchaeota were the most abundant Archaea (up to 98% of the total archaeal 16S rDNA copies) in the suboxic layers with oxygen levels as low as 1 μM including layers where previously anammox bacteria were described (Kuypers et al., 2003). Different marine crenarchaeotal phylotypes (both 16S rDNA and amoA) were found at the upper part of the suboxic zone as compared to the base of the suboxic zone and the upper 15-30 m of the anoxic waters with prevailing sulfide concentrations of up to 30 μM. Crenarchaeol concentrations were higher in the sulfidic chemocline as compared to the suboxic zone. These results indicate an abundance of putative nitrifying Archaea at very low oxygen levels within the Black Sea and might form an important source of nitrite for the anammox reaction.This work was supported by a grant from the Netherlands Organization for Scientific Research (VENI Innovational Research Grant nr. 813.13.001 to MJLC), an U. S. National Science Foundation grant OCE0117824 to SGW and the Spinoza award to JSSD, which we greatly acknowledge

    Fungal community analysis using denaturing gradient gel electrophoresis (DGGE)

    No full text

    Effects of genetically modified crops on beneficial soil fungi, part two

    No full text

    Bad News for Soil Carbon Sequestration?

    No full text
    Arbuscular mycorrhizal fungi may stimulate additional decomposition of organic carbon in the soil, resulting in a net source of carbon dioxide
    corecore