1,033 research outputs found
An automated focal point positioning and emittance measurement procedure for the interaction point of the SLC
To achieve maximum luminosity at the SLC, both the electron and positron beams must reach their minimum transverse size within 1 mm of the longitudinal location where the two bunches collide. This paper describes an automated procedure for positioning the focal point of each beam at this collision point. The technique is based on measurements of the beam size utilizing either secondary emission or bremsstrahlung signals from carbon fibers a few microns in diameter. We have achieved simultaneous and reproducible measurements of the angular spread (~ 200 [mu] rad) and of the optimum beam spot size ~ [omega]m), which when combined yield measurements of the beam emittance consistent with those obtained using conventional profile monitor techniques.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28674/1/0000491.pd
Recommended from our members
Beam-beam deflection as a beam tuning tool at the SLAC linear collider
To achieve maximum integrated luminosity at the SLAC Linear Collider, a method of noninvasive beam tuning is required. Traditional luminosity monitors based on Bhabha scattering are inadequate because of low instantaneous counting rates. Coherent deflections of one beam by the electromagnetic field of the other are sensitive not only to the relative steering of the two bunches but also to their spot sizes. A brief description of beam-beam deflection theory forms the basis for a discussion of this phenomenon as a tool for single-beam tuning and for luminosity optimization at the interaction point of the SLC.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28771/1/0000603.pd
The performance of "Virtual Phase" CCDs as detectors of minimum-ionizing particles
The Texas Instruments "Virtual Phase" CCD has been the basis of an ambitious design for a precision vertex detector to be used at the Stanford Linear Collider. The performance of this chip shows promise for future use in electron linear colliders. Experimental results are reported in addition to description of the electronic readout and preliminary mechanical design.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/26549/1/0000088.pd
A high resolution wire scanner for micron-size profile measurements at the SLC
Fine conductive fibers have been used to measure transverse beam dimensions of a few microns at the Stanford Linear Collider (SLC). The beam profile is obtained by scanning a fiber across the beam in steps as small as 1 [mu]m, and recording the secondary emission signal at each step, using a charge sensitive amplifier. We first outline the mechanical construction and the analogue electronics of the wire scanner. We then describe its performance in test beams and in actual operation. The article closes with a brief discussion of performance limitations of such a beam profile monitor.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28112/1/0000561.pd
Search for charged Higgs decays of the top quark using hadronic tau decays
We present the result of a search for charged Higgs decays of the top quark,
produced in collisions at 1.8 TeV. When the charged
Higgs is heavy and decays to a tau lepton, which subsequently decays
hadronically, the resulting events have a unique signature: large missing
transverse energy and the low-charged-multiplicity tau. Data collected in the
period 1992-1993 at the Collider Detector at Fermilab, corresponding to
18.70.7~pb, exclude new regions of combined top quark and charged
Higgs mass, in extensions to the standard model with two Higgs doublets.Comment: uuencoded, gzipped tar file of LaTeX and 6 Postscript figures; 11 pp;
submitted to Phys. Rev.
Inclusive jet cross section in collisions at TeV
The inclusive jet differential cross section has been measured for jet
transverse energies, , from 15 to 440 GeV, in the pseudorapidity region
0.10.7. The results are based on 19.5 pb of data
collected by the CDF collaboration at the Fermilab Tevatron collider. The data
are compared with QCD predictions for various sets of parton distribution
functions. The cross section for jets with GeV is significantly
higher than current predictions based on O() perturbative QCD
calculations. Various possible explanations for the high- excess are
discussed.Comment: 8 pages with 2 eps uu-encoded figures Submitted to Physical Review
Letter
Measurement of Dijet Angular Distributions at CDF
We have used 106 pb^-1 of data collected in proton-antiproton collisions at
sqrt(s)=1.8 TeV by the Collider Detector at Fermilab to measure jet angular
distributions in events with two jets in the final state. The angular
distributions agree with next to leading order (NLO) predictions of Quantum
Chromodynamics (QCD) in all dijet invariant mass regions. The data exclude at
95% confidence level (CL) a model of quark substructure in which only up and
down quarks are composite and the contact interaction scale is Lambda_ud(+) <
1.6 TeV or Lambda_ud(-) < 1.4 TeV. For a model in which all quarks are
composite the excluded regions are Lambda(+) < 1.8 TeV and Lambda(-) < 1. 6
TeV.Comment: 16 pages, 2 figures, 2 tables, LaTex, using epsf.sty. Submitted to
Physical Review Letters on September 17, 1996. Postscript file of full paper
available at http://www-cdf.fnal.gov/physics/pub96/cdf3773_dijet_angle_prl.p
- âŠ