85 research outputs found

    Ultrabright narrow-band telecom two-photon source for long-distance quantum communication

    Full text link
    We demonstrate an ultrabright narrow-band two-photon source at the 1.5 -\mu m telecom wavelength for long-distance quantum communication. By utilizing a bow-tie cavity, we obtain a cavity enhancement factor of 4.06×1044.06\times 10^4. Our measurement of the second-order correlation function G(2)(τ)G^{(2)} ({\tau}) reveals that the linewidth of 2.42.4 MHz has been hitherto unachieved in the 1.5 -\mu m telecom band. This two-photon source is useful for obtaining a high absorption probability close to unity by quantum memories set inside quantum repeater nodes. Furthermore, to the best of our knowledge, the observed spectral brightness of 3.94×1053.94\times 10^5 pairs/(s\cdotMHz\cdotmW) is also the highest reported over all wavelengths.Comment: 11 pages, 4 figures, 2 table

    The ASTRO-H X-ray Observatory

    Full text link
    The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the high-energy universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV. These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3-2 keV with high spectral resolution of Delta E < 7 eV, enabled by a micro-calorimeter array located in the focal plane of thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5-80 keV, located in the focal plane of multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4-12 keV, with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera type soft gamma-ray detector, sensitive in the 40-600 keV band. The simultaneous broad bandpass, coupled with high spectral resolution, will enable the pursuit of a wide variety of important science themes.Comment: 22 pages, 17 figures, Proceedings of the SPIE Astronomical Instrumentation "Space Telescopes and Instrumentation 2012: Ultraviolet to Gamma Ray

    Hitomi (ASTRO-H) X-ray Astronomy Satellite

    Get PDF
    The Hitomi (ASTRO-H) mission is the sixth Japanese x-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E  >  2  keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft x-rays to gamma rays. After a successful launch on February 17, 2016, the spacecraft lost its function on March 26, 2016, but the commissioning phase for about a month provided valuable information on the onboard instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month

    Study on Optimum Design of Multi-Pole Interior Permanent Magnet Motor with Concentrated Windings

    No full text

    Torque-Maximizing Design of Concentrated-Winding IPMSM for Saliency-Based Sensorless HEV Drives

    No full text

    GA-Based Computer-Aided Electromagnetic Design of Two-Phase SRM for Compressor Drives

    No full text
    corecore