538 research outputs found

    Heavy ion collisions: Correlations and Fluctuations in particle production

    Full text link
    Correlations and fluctuations (the latter are directly related to the 2-particle correlations) is one of the important directions in analysis of heavy ion collisions. At the current stage of RHIC exploration, when the details matter, basically any physics question is addressed with help of correlation techniques. In this talk I start with a general introduction to the correlation and fluctuation formalism and discuss weak and strong sides of different type of observables. In more detail, I discuss the two-particle ptp_t correlations/\mpt fluctuations. In spite of not observing any dramatic changes in the event-by-event fluctuations with energy, which would indicate a possible phase transition, such correlations measurements remain an interesting and important subject, bringing valuable information. Lastly, I show how radial flow can generate characteristic azimuthal, transverse momentum and rapidity correlations, which could qualitatively explain many of recently observed phenomena in nuclear collisions.Comment: 8 pages, 8 figures. Invited talk at 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma, February 8-12, 2005, Salt Lake City, Kolkata, Indi

    Strange Meson Enhancement in PbPb Collisions

    Get PDF
    The NA44 Collaboration has measured yields and differential distributions of K+, K-, pi+, pi- in transverse kinetic energy and rapidity, around the center-of-mass rapidity in 158 A GeV/c Pb+Pb collisions at the CERN SPS. A considerable enhancement of K+ production per pi is observed, as compared to p+p collisions at this energy. To illustrate the importance of secondary hadron rescattering as an enhancement mechanism, we compare strangeness production at the SPS and AGS with predictions of the transport model RQMD.Comment: 11 pages, including 4 figures, LATE

    Two-kaon correlations in central Pb + Pb collisions at 158 A GeV/c

    Get PDF
    Two-particle interferometry of positive kaons is studied in Pb + Pb collisions at mean transverse momenta 0.25\approx 0.25 and 0.91 GeV/c. A three-dimensional analysis was applied to the lower pTp_T data, while a two-dimensional analysis was used for the higher pTp_T data. We find that the source size parameters are consistent with the mTm_T scaling curve observed in pion correlation measurements in the same collisions, and that the duration time of kaon emission is consistent with zero within the experimental sensitivity.Comment: 4 pages incl. 1 table and 3 fig's; RevTeX; accepted for publication in PR

    Correlations in STAR: interferometry and event structure

    Full text link
    STAR observes a complex picture of RHIC collisions where correlation effects of different origins -- initial state geometry, semi-hard scattering, hadronization, as well as final state interactions such as quantum intensity interference -- coexist. Presenting the measurements of flow, mini-jet deformation, modified hadronization, and the Hanbury Brown and Twiss effect, we trace the history of the system from the initial to the final state. The resulting picture is discussed in the context of identifying the relevant degrees of freedom and the likely equilibration mechanism.Comment: 8 pages, 6 figures, plenary talk at the 5th International Conference on Physics and Astrophysics of Quark Gluon Plasma, to appear in Journal of Physics G (http://www.iop.org

    Disappearance of back-to-back high pTp_T hadron correlations in central Au+Au collisions at sNN\sqrt{s_{NN}} = 200 GeV

    Full text link
    Azimuthal correlations for large transverse momentum charged hadrons have been measured over a wide pseudo-rapidity range and full azimuth in Au+Au and p+p collisions at sNN\sqrt{s_{NN}} = 200 GeV. The small-angle correlations observed in p+p collisions and at all centralities of Au+Au collisions are characteristic of hard-scattering processes already observed in elementary collisions. A strong back-to-back correlation exists for p+p and peripheral Au + Au. In contrast, the back-to-back correlations are reduced considerably in the most central Au+Au collisions, indicating substantial interaction as the hard-scattered partons or their fragmentation products traverse the medium.Comment: submitted to Phys. Rev. Let

    Spin alignment measurements of the K0(892)K^{*0}(892) and ϕ(1020)\phi(1020) vector mesons at RHIC

    Get PDF
    We present the first spin alignment measurements for the K0(892)K^{*0}(892) and ϕ(1020)\phi(1020) vector mesons produced at mid-rapidity with transverse momenta up to 5 GeV/c at sNN\sqrt{s_{NN}} = 200 GeV at RHIC. The diagonal spin density matrix elements with respect to the reaction plane in Au+Au collisions are ρ00\rho_{00} = 0.32 ±\pm 0.04 (stat) ±\pm 0.09 (syst) for the K0K^{*0} (0.8<pT<5.00.8<p_T<5.0 GeV/c) and ρ00\rho_{00} = 0.34 ±\pm 0.02 (stat) ±\pm 0.03 (syst) for the ϕ\phi (0.4<pT<5.00.4<p_T<5.0 GeV/c), and are constant with transverse momentum and collision centrality. The data are consistent with the unpolarized expectation of 1/3 and thus no evidence is found for the transfer of the orbital angular momentum of the colliding system to the vector meson spins. Spin alignments for K0K^{*0} and ϕ\phi in Au+Au collisions were also measured with respect to the particle's production plane. The ϕ\phi result, ρ00\rho_{00} = 0.41 ±\pm 0.02 (stat) ±\pm 0.04 (syst), is consistent with that in p+p collisions, ρ00\rho_{00} = 0.39 ±\pm 0.03 (stat) ±\pm 0.06 (syst), also measured in this work. The measurements thus constrain the possible size of polarization phenomena in the production dynamics of vector mesons.Comment: 7 pages, 4 figures. fig.1 updated; one more reference added, one typo corrected, published in PRC.77.06190

    System-Size Independence of Directed Flow Measured at the BNL Relativistic Heavy-Ion Collider

    Get PDF
    We measure directed flow (ν_1) for charged particles in Au+Au and Cu+Cu collisions at √S_(NN)=200 and 62.4 GeV, as a function of pseudorapidity (η), transverse momentum (p_t), and collision centrality, based on data from the STAR experiment. We find that the directed flow depends on the incident energy but, contrary to all available model implementations, not on the size of the colliding system at a given centrality. We extend the validity of the limiting fragmentation concept to ν_1 in different collision systems, and investigate possible explanations for the observed sign change in ν_1(p_t)

    Longitudinal double-spin asymmetry for inclusive jet production in p+p collisions at sqrt(s)=200 GeV

    Get PDF
    We report a new STAR measurement of the longitudinal double-spin asymmetry A_LL for inclusive jet production at mid-rapidity in polarized p+p collisions at a center-of-mass energy of sqrt(s) = 200 GeV. The data, which cover jet transverse momenta 5 < p_T < 30 GeV/c, are substantially more precise than previous measurements. They provide significant new constraints on the gluon spin contribution to the nucleon spin through the comparison to predictions derived from one global fit of polarized deep-inelastic scattering measurements.Comment: 7 pages, 4 figures + 1 tabl

    Azimuthal anisotropy and correlations in the hard scattering regime at RHIC

    Get PDF
    Azimuthal anisotropy (v2v_2) and two-particle angular correlations of high pTp_T charged hadrons have been measured in Au+Au collisions at sNN\sqrt{s_{NN}}=130 GeV for transverse momenta up to 6 GeV/c, where hard processes are expected to contribute significantly. The two-particle angular correlations exhibit elliptic flow and a structure suggestive of fragmentation of high pTp_T partons. The monotonic rise of v2(pT)v_2(p_T) for pT<2p_T<2 GeV/c is consistent with collective hydrodynamical flow calculations. At \pT>3 GeV/c a saturation of v2v_2 is observed which persists up to pT=6p_T=6 GeV/c.Comment: As publishe
    corecore