727 research outputs found

    GluR1 links structural and functional plasticity at excitatory synapses

    Get PDF
    Long-term potentiation (LTP), a cellular model of learning and memory, produces both an enhancement of synaptic function and an increase in the size of the associated dendritic spine. Synaptic insertion of AMPA receptors is known to play an important role in mediating the increase in synaptic strength during LTP, whereas the role of AMPA receptor trafficking in structural changes remains unexplored. Here, we examine how the cell maintains the correlation between spine size and synapse strength during LTP. We found that cells exploit an elegant solution by linking both processes to a single molecule: the AMPA-type glutamate receptor subunit 1 (GluR1). Synaptic insertion of GluR1 is required to permit a stable increase in spine size, both in hippocampal slice cultures and in vivo. Synaptic insertion of GluR1 is not sufficient to drive structural plasticity. Although crucial to the expression of LTP, the ion channel function of GluR1 is not required for the LTP-driven spine size enhancement. Remarkably, a recombinant cytosolic C-terminal fragment (C-tail) of GluR1 is driven to the postsynaptic density after an LTP stimulus, and the synaptic incorporation of this isolated GluR1 C-tail is sufficient to permit spine enlargement even when postsynaptic exocytosis of endogenous GluR1 is blocked. We conclude that during plasticity, synaptic insertion of GluR1 has two functions: the established role of increasing synaptic strength via its ligand-gated ion channel, and a novel role through the structurally stabilizing effect of its C terminus that permits an increase in spine size

    A robust automated method to analyze rodent motion during fear conditioning

    Get PDF
    A central question in the study of LTP has been to determine what role it plays in memory formation and storage. One valuable form of learning for addressing this issue is associative fear conditioning. In this paradigm an animal learns to associate a tone and shock, such that subsequent presentation of a tone evokes a fear response (freezing behavior). Recent studies indicate that overlapping cellular processes underlie fear conditioning and LTP. The fear response has generally been scored manually which is both labor-intensive and subject to potential artifacts such as inconsistent or biased results. Here we describe a simple automated method that provides unbiased and rapid analysis of animal motion. We show that measured motion, in units termed significant motion pixels (SMPs), is both linear and robust over a wide range of animal speeds and detection thresholds and scores freezing in a quantitatively similar manner to trained human observers. By comparing the frequency distribution of motion during baseline periods and to the response to fox urine (which causes unconditioned fear), we suggest that freezing and non-freezing are distinct behaviors. Finally, we show how this algorithm can be applied to a fear conditioning paradigm yielding information on long and short-term associative memory as well as habituation. This automated analysis of fear conditioning will permit a more rapid and accurate assessment of the role of LTP in memory

    Corporate Culture and Its Connection with External and Internal Public Relations

    Get PDF
    The main aim of this article is to present the influence of corporate culture on company's stakeholders. This paper signalises the tendency in corporate communication with its internal and external publics. It is focused on two issues: corporate social responsibility and employer branding. Those two categories are consequences of corporate culture model.Głównym celem artykułu jest zaprezentowanie wpływu jaki wywiera charakter kultury korporacyjnej na związanych z przedsiębiorstwem interesariuszy (stakeholders). W artykule zasygnalizowane zostały główne tendencje wyznaczające charakter komunikacji między organizacją a jej wewnętrznym i zewnętrznym otoczeniem. Tekst koncentruje się na dwóch kwestiach: społecznej odpowiedzialności przedsiębiorstwa (corporate social responsibilty) i budowanie wizerunku pracodawcy (employer branding), które zaprezentowane zostały jako efekty określonego modelu kultury organizacyjnej

    Temperature-doping phase diagram of layered superconductors

    Full text link
    The superconducting properties of a layered system are analyzed for the cases of zero- and non-zero angular momentum of the pairs. The effective thermodynamic potential for the quasi-2D XY-model for the gradients of the phase of the order parameter is derived from the microscopic superconducting Hamiltonian. The dependence of the superconducting critical temperature T_c on doping, or carrier density, is studied at different values of coupling and inter-layer hopping. It is shown that the critical temperature T_c of the layered system can be lower than the critical temperature of the two-dimensional Berezinskii-Kosterlitz-Thouless transition T_BKT at some values of the model parameters, contrary to the case when the parameters of the XY-model do not depend on the microscopic Hamiltonian parameters.Comment: To be published in Phys. Rev.

    Estimating the glutamate transporter surface density in distinct sub-cellular compartments of mouse hippocampal astrocytes

    Get PDF
    Glutamate transporters preserve the spatial specificity of synaptic transmission by limiting glutamate diffusion away from the synaptic cleft, and prevent excitotoxicity by keeping the extracellular concentration of glutamate at low nanomolar levels. Glutamate transporters are abundantly expressed in astrocytes, and previous estimates have been obtained about their surface expression in astrocytes of the rat hippocampus and cerebellum. Analogous estimates for the mouse hippocampus are currently not available. In this work, we derive the surface density of astrocytic glutamate transporters in mice of different ages via quantitative dot blot. We find that the surface density of glial glutamate transporters is similar in 7-8 week old mice and rats. In mice, the levels of glutamate transporters increase until about 6 months of age and then begin to decline slowly. Our data, obtained from a combination of experimental and modeling approaches, point to the existence of stark differences in the density of expression of glutamate transporters across different sub-cellular compartments, indicating that the extent to which astrocytes limit extrasynaptic glutamate diffusion depends not only on their level of synaptic coverage, but also on the identity of the astrocyte compartment in contact with the synapse. Together, these findings provide information on how heterogeneity in the spatial distribution of glutamate transporters in the plasma membrane of hippocampal astrocytes my alter glutamate receptor activation out of the synaptic cleft

    Digital Signal Processing

    Get PDF
    Contains research objectives and summary of research on seven research projects.U. S. Navy Office of Naval Research (Contract N00014-75-C-0951)National Science Foundation (Grant ENG71-02319-A02

    Theory of a spherical quantum rotors model: low--temperature regime and finite-size scaling

    Full text link
    The quantum rotors model can be regarded as an effective model for the low-temperature behavior of the quantum Heisenberg antiferromagnets. Here, we consider a dd-dimensional model in the spherical approximation confined to a general geometry of the form Ldd×d×LτzL^{d-d'}\times\infty^{d'}\times L_{\tau}^{z} ( LL-linear space size and LτL_{\tau}-temporal size) and subjected to periodic boundary conditions. Due to the remarkable opportunity it offers for rigorous study of finite-size effects at arbitrary dimensionality this model may play the same role in quantum critical phenomena as the popular Berlin-Kac spherical model in classical critical phenomena. Close to the zero-temperature quantum critical point, the ideas of finite-size scaling are utilized to the fullest extent for studying the critical behavior of the model. For different dimensions 1<d<31<d<3 and 0dd0\leq d'\leq d a detailed analysis, in terms of the special functions of classical mathematics, for the susceptibility and the equation of state is given. Particular attention is paid to the two-dimensional case.Comment: 33pages, revtex+epsf, 3ps figures included submitted to PR

    Computed tomographic analysis of the quality of trunk muscles in asymptomatic and symptomatic lumbar discectomy patients

    Get PDF
    Background: No consensus exists on how rehabilitation programs for lumbar discectomy patients with persistent complaints after surgery should be composed. A better understanding of normal and abnormal postoperative trunk muscle condition might help direct the treatment goals. Methods: A three-dimensional CT scan of the lumbar spine was obtained in 18 symptomatic and 18 asymptomatic patients who had undergone a lumbar discectomy 42 months to 83 months (median 63 months) previously. The psoas muscle (PS), the paraspinal muscle mass (PA) and the multifidus muscle (MF) were outlined at the L3, L4 and L5 level. Of these muscles, fat free Cross Sectional Area (CSA) and fat CSA were determined. CSA of the lumbar erector spinae (LES = longissimus thoracis + iliocostalis lumborum) was calculated by subtracting MF CSA from PA CSA. Mean muscle CSA of the left and right sides was calculated at each level. To normalize the data for interpersonal comparison, the mean CSA was divided by the CSA of the L3 vertebral body (mCSA = normalized fat-free muscle CSA; fCSA = normalized fat CSA). Differences in CSA between the pain group and the pain free group were examined using a General Linear Model (GLM). Three levels were examined to investigate the possible role of the level of operation. Results: In lumbar discectomy patients with pain, the mCSA of the MF was significantly smaller than in pain-free subjects (p = 0.009) independently of the level. The mCSA of the LES was significantly smaller in pain patients, but only on the L3 slice (p = 0.018). No significant difference in mCSA of the PS was found between pain patients and pain-free patients (p = 0.462). The fCSA of the MF (p = 0.186) and of the LES (p = 0.256) were not significantly different between both populations. However, the fCSA of the PS was significantly larger in pain patients than in pain-free patients. (p = 0.012). The level of operation was never a significant factor. Conclusions: CT comparison of MF, LES and PS muscle condition between lumbar discectomy patients without pain and patients with protracted postoperative pain showed a smaller fat-free muscle CSA of the MF at all levels examined, a smaller fat-free muscle CSA of the LES at the L3 level, and more fat in the PS in patients with pain. The level of operation was not found to be of importance. The present results suggest a general lumbar muscle dysfunction in the pain group, in particular of the deep stabilizing muscle system

    Quantum phase transitions and thermodynamic properties in highly anisotropic magnets

    Full text link
    The systems exhibiting quantum phase transitions (QPT) are investigated within the Ising model in the transverse field and Heisenberg model with easy-plane single-site anisotropy. Near QPT a correspondence between parameters of these models and of quantum phi^4 model is established. A scaling analysis is performed for the ground-state properties. The influence of the external longitudinal magnetic field on the ground-state properties is investigated, and the corresponding magnetic susceptibility is calculated. Finite-temperature properties are considered with the use of the scaling analysis for the effective classical model proposed by Sachdev. Analytical results for the ordering temperature and temperature dependences of the magnetization and energy gap are obtained in the case of a small ground-state moment. The forms of dependences of observable quantities on the bare splitting (or magnetic field) and renormalized splitting turn out to be different. A comparison with numerical calculations and experimental data on systems demonstrating magnetic and structural transitions (e.g., into singlet state) is performed.Comment: 46 pages, RevTeX, 6 figure

    Differences in proteolytic activity and gene profiles of fungal strains isolated from the total parenteral nutrition patients

    Get PDF
    Fungal infections constitute a serious clinical problem in the group of patients receiving total parenteral nutrition. The majority of species isolated from infections of the total parenteral nutrition patients belong to Candida genus. The most important factors of Candida spp. virulence are the phenomenon of “phenotypic switching,” adhesins, dimorphism of fungal cells and the secretion of hydrolytic enzymes such as proteinases and lipases, including aspartyl proteinases. We determined the proteolytic activity of yeast-like fungal strains cultured from the clinical materials of patients receiving total parenteral nutrition and detected genes encoding aspartyl proteinases in predominant species Candida glabrata—YPS2, YPS4, and YPS6, and Candida albicans—SAP1–3, SAP4, SAP5, and SAP6. C. albicans released proteinases on the various activity levels. All C. glabrata strains obtained from the clinical materials of examined and control groups exhibited secretion of the proteinases. All 13 isolates of C. albicans possessed genes SAP1–3. Gene SAP4 was detected in genome of 11 C. albicans strains, SAP5 in 6, and SAP6 in 11. Twenty-six among 31 of C. glabrata isolates contained YPS2 gene, 21 the YPS4 gene, and 28 the YPS6 gene. We observed that clinical isolates of C. albicans and C. glabrata differed in SAPs and YPSs gene profiles, respectively, and displayed differentiated proteolytic activity. We suppose that different sets of aspartyl proteinases genes as well as various proteinase-activity levels would have the influence on strains virulence
    corecore