25 research outputs found

    Epidermal Growth Factor Gene Polymorphism and Risk of Hepatocellular Carcinoma: A Meta-Analysis

    Get PDF
    BACKGROUND: Hepatocarcinogenesis is a complex process that may be influenced by many factors, including polymorphism in the epidermal growth factor (EGF) gene. Previous work suggests an association between the EGF 61*A/G polymorphism (rs4444903) and susceptibility to hepatocellular carcinoma (HCC), but the results have been inconsistent. Therefore, we performed a meta-analysis of several studies covering a large population to address this controversy. METHODS: PubMed, EMBASE, Google Scholar and the Chinese National Knowledge Infrastructure databases were systematically searched to identify relevant studies. Data were abstracted independently by two reviewers. A meta-analysis was performed to examine the association between EGF 61*A/G polymorphism and susceptibility to HCC. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. RESULTS: Eight studies were chosen in this meta-analysis, involving 1,304 HCC cases (1135 Chinese, 44 Caucasian and 125 mixed) and 2,613 controls (1638 Chinese, 77 Caucasian and 898 mixed). The EGF 61*G allele was significantly associated with increased risk of HCC based on allelic contrast (OR = 1.29, 95% CI = 1.16-1.44, p<0.001), homozygote comparison (OR = 1.79, 95% CI = 1.39-2.29, p<0.001) and a recessive genetic model (OR = 1.34, 95% CI = 1.16-1.54, p<0.001), while patients carrying the EGF 61*A/A genotype had significantly lower risk of HCC than those with the G/A or G/G genotype (A/A vs. G/A+G/G, OR = 0.66, 95% CI = 0.53-0.83, p<0.001). CONCLUSION: The 61*G polymorphism in EGF is a risk factor for hepatocarcinogenesis while the EGF 61*A allele is a protective factor. Further large and well-designed studies are needed to confirm this conclusion

    Mouse model of carbon tetrachloride induced liver fibrosis: Histopathological changes and expression of CD133 and epidermal growth factor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the setting of chronic liver injury in humans, epidermal growth factor (EGF) and EGF receptor (EGFR) are up-regulated and have been proposed to have vital roles in both liver regeneration and development of hepatocellular carcinoma (HCC). Chronic liver injury also leads to hepatic stellate cell (HSC) differentiation and a novel subpopulation of HSCs which express CD133 and exhibit properties of progenitor cells has been described in rats. The carbon tetrachloride (CCl<sub>4</sub>)-induced mouse model has been historically relied upon to study liver injury and regeneration. We exposed mice to CCl<sub>4 </sub>to assess whether EGF and CD133+ HSCs are up-regulated in chronically injured liver.</p> <p>Methods</p> <p>CCl<sub>4 </sub>in olive oil was administered to strain A/J mice three times per week by oral gavage.</p> <p>Results</p> <p>Multiple well-differentiated HCCs were found in all livers after 15 weeks of CCl<sub>4 </sub>treatment. Notably, HCCs developed within the setting of fibrosis and not cirrhosis. CD133 was dramatically up-regulated after CCl<sub>4 </sub>treatment, and increased expression of desmin and glial fibrillary acidic protein, representative markers of HSCs, was also observed. EGF expression significantly decreased, contrary to observations in humans, whereas the expression of amphiregulin, another EGFR ligand, was significantly increased.</p> <p>Conclusions</p> <p>Species-specific differences exist with respect to the histopathological and molecular pathogenesis of chronic liver disease. CCl<sub>4</sub>-induced chronic liver injury in A/J mice has important differences compared to human cirrhosis leading to HCC.</p

    HOXB13 is downregulated in colorectal cancer to confer TCF4-mediated transactivation

    Get PDF
    Mutations in the Wnt signalling cascade are believed to cause aberrant proliferation of colorectal cells through T-cell factor-4 (TCF4) and its downstream growth-modulating factors. HOXB13 is exclusively expressed in prostate and colorectum. In prostate cancers, HOXB13 negatively regulates β-catenin/TCF4-mediated transactivation and subsequently inhibits cell growth. To study the role of HOXB13 in colorectal tumorigenesis, we evaluated the expression of HOXB13 in 53 colorectal tumours originated from the distal left colon to rectum with their matching normal tissues using quantitative RT–PCR analysis. Expression of HOXB13 is either lost or diminished in 26 out of 42 valid tumours (62%), while expression of TCF4 RNA is not correlated with HOXB13 expression. TCF4 promoter analysis showed that HOXB13 does not regulate TCF4 at the transcriptional level. However, HOXB13 downregulated the expression of TCF4 and its target gene, c-myc, at the protein level and consequently inhibited β-catenin/TCF-mediated signalling. Functionally, forced expression of HOXB13 drove colorectal cancer (CRC) cells into growth suppression. This is the first description of the downregulation of HOXB13 in CRC and its mechanism of action is mediated through the regulation of TCF4 protein stability. Our results suggest that loss of HOXB13 may be an important event for colorectal cell transformation, considering that over 90% of colorectal tumours retain mutations in the APC/β-catenin pathway

    PPARα Deficiency in Inflammatory Cells Suppresses Tumor Growth

    Get PDF
    Inflammation in the tumor bed can either promote or inhibit tumor growth. Peroxisome proliferator-activated receptor (PPAR)α is a central transcriptional suppressor of inflammation, and may therefore modulate tumor growth. Here we show that PPARα deficiency in the host leads to overt inflammation that suppresses angiogenesis via excess production of the endogenous angiogenesis inhibitor thrombospondin-1 and prevents tumor growth. Bone marrow transplantation and granulocyte depletion show that PPARα expressing granulocytes are necessary for tumor growth. Neutralization of thrombospondin-1 restores tumor growth in PPARα-deficient mice. These findings suggest that the absence of PPARα activity renders inflammatory infiltrates tumor suppressive and, thus, may provide a target for inhibiting tumor growth by modulating stromal processes, such as angiogenesis

    Dysfunctional keratinocytes increase dermal inflammation in systemic sclerosis. Results from tissue-engineered scleroderma epidermis

    No full text
    In systemic sclerosis (SSc) evidence suggests abnormal keratinocyte-fibroblast interactions. We investigated the potential epidermal dysfunction in SSc and its effects on dermal homeostasis
    corecore