15 research outputs found

    Kaposi's Sarcoma-Associated Herpesvirus K8β Is Derived from a Spliced Intermediate of K8 Pre-mRNA and Antagonizes K8α (K-bZIP) To Induce p21 and p53 and Blocks K8α-CDK2 Interaction

    No full text
    Kaposi's sarcoma-associated herpesvirus (KSHV) is a lymphotropic DNA tumor virus that induces Kaposi's sarcoma and AIDS-related primary effusion lymphoma. KSHV open reading frame 50 and K8 genes in early viral lytic infection express, respectively, a tricistronic and a bicistronic pre-mRNA, which undergo alternative splicing to create two major spliced mRNA isoforms, α and β, by inclusion (β) or exclusion (α) of an intron at nucleotides 75563 to 75645. This intron contains some suboptimal features, which cause the intron 5′ splice site (ss) to interact weakly with U1 snRNA and the 3′ ss to bind a U2 auxiliary factor, U2AF, with low affinity. Optimization of this intron in K8 (K8 intron 2) promoted the interaction of the 5′ ss with U1 and the 3′ ss with U2AF, resulting in a substantial increase in intron splicing. Splicing of K8 intron 2 has also been shown to be stimulated by the splicing of a downstream intron. This was confirmed by the insertion of a human β-globin intron into the K8β exon 3-exon 4 splice junction, which promoted splicing of K8β intron 2 and conversion of the K8β mRNA to the K8α mRNA that encodes a K-bZIP protein. Intron 2 contains a premature termination codon, yet the K8β mRNA is insensitive to nonsense-mediated mRNA decay, suggesting that the truncated K8β protein may have a biological function. Indeed, although the truncated K8β protein is missing only a C-terminal leucine zipper domain from the K-bZIP, its expression antagonizes the ability of the K-bZIP to induce p53 and p21 and blocks K-bZIP-CDK2 interaction through interfering K8α mRNA production

    Gene Structure and Expression of Kaposi's Sarcoma-Associated Herpesvirus ORF56, ORF57, ORF58, and ORF59

    No full text
    Though similar to those of herpesvirus saimiri and Epstein-Barr virus (EBV), the Kaposi's sarcoma-associated herpesvirus (KSHV) genome features more splice genes and encodes many genes with bicistronic or polycistronic transcripts. In the present study, the gene structure and expression of KSHV ORF56 (primase), ORF57 (MTA), ORF58 (EBV BMRF2 homologue), and ORF59 (DNA polymerase processivity factor) were analyzed in butyrate-activated KSHV(+) JSC-1 cells. ORF56 was expressed at low abundance as a bicistronic ORF56/57 transcript that utilized the same intron, with two alternative branch points, as ORF57 for its RNA splicing. ORF56 was transcribed from two transcription start sites, nucleotides (nt) 78994 (minor) and 79075 (major), but selected the same poly(A) signal as ORF57 for RNA polyadenylation. The majority of ORF56 and ORF57 transcripts were cleaved at nt 83628, although other nearby cleavage sites were selectable. On the opposite strand of the viral genome, colinear ORF58 and ORF59 were transcribed from different transcription start sites, nt 95821 (major) or 95824 (minor) for ORF58 and nt 96790 (minor) or 96794 (major) for ORF59, but shared overlapping poly(A) signals at nt 94492 and 94488. Two cleavage sites, at nt 94477 and nt 94469, could be equally selected for ORF59 polyadenylation, but only the cleavage site at nt 94469 could be selected for ORF58 polyadenylation without disrupting the ORF58 stop codon immediately upstream. ORF58 was expressed in low abundance as a monocistronic transcript, with a long 5′ untranslated region (UTR) but a short 3′ UTR, whereas ORF59 was expressed in high abundance as a bicistronic transcript, with a short 5′ UTR and a long 3′ UTR similar to those of polycistronic ORF60 and ORF62. Both ORF56 and ORF59 are targets of ORF57 and were up-regulated significantly in the presence of ORF57, a posttranscriptional regulator

    Requirement of a 12-Base-Pair TATT-Containing Sequence and Viral Lytic DNA Replication in Activation of the Kaposi's Sarcoma-Associated Herpesvirus K8.1 Late Promoter

    No full text
    Kaposi's sarcoma-associated herpesvirus (KSHV) K8.1 late promoter consists of a minimal 24-bp sequence, with a TATA-like, 12-bp promoter core, AATATTAAAGGG, and is active on a reporter only in butyrate-induced KSHV-infected cells. The activity of the K8.1 promoter can be enhanced (>15-fold) by the KSHV left-end lytic origin of DNA replication (oriLyt-L) sequence while providing inefficient replication of plasmid DNA and is inhibited by viral DNA replication inhibitors, suggesting that activation of the K8.1 promoter on the reporter is involved in KSHV lytic DNA replication largely by trans

    Kaposi's Sarcoma-Associated Herpesvirus ORF57 Functions as a Viral Splicing Factor and Promotes Expression of Intron-Containing Viral Lytic Genes in Spliceosome-Mediated RNA Splicing▿

    No full text
    Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 facilitates the expression of both intronless viral ORF59 genes and intron-containing viral K8 and K8.1 genes (V. Majerciak, N. Pripuzova, J. P. McCoy, S. J. Gao, and Z. M. Zheng, J. Virol. 81:1062-1071, 2007). In this study, we showed that disruption of ORF57 in a KSHV genome led to increased accumulation of ORF50 and K8 pre-mRNAs and reduced expression of ORF50 and K-bZIP proteins but had no effect on latency-associated nuclear antigen (LANA). Cotransfection of ORF57 and K8β cDNA, which retains a suboptimal intron of K8 pre-mRNA due to alternative splicing, promoted RNA splicing of K8β and production of K8α (K-bZIP). Although Epstein-Barr virus EB2, a closely related homolog of ORF57, had a similar activity in the cotransfection assays, herpes simplex virus type 1 ICP27 was inactive. This enhancement of RNA splicing by ORF57 correlates with the intact N-terminal nuclear localization signal motifs of ORF57 and takes place in the absence of other viral proteins. In activated KSHV-infected B cells, KSHV ORF57 partially colocalizes with splicing factors in nuclear speckles and assembles into spliceosomal complexes in association with low-abundance viral ORF50 and K8 pre-mRNAs and essential splicing components. The association of ORF57 with snRNAs occurs by ORF57-Sm protein interaction. We also found that ORF57 binds K8β pre-mRNAs in vitro in the presence of nuclear extracts. Collectively our data indicate that KSHV ORF57 functions as a novel splicing factor in the spliceosome-mediated splicing of viral RNA transcripts

    RP S19 C-terminal peptide trimer acts as a C5a receptor antagonist

    Get PDF
    AbstractWe have demonstrated that ribosomal protein S19 (RP S19) polymer, when crosslinked between Lys122 and Gln137 by activated coagulation factor XIII, acts as a C5a receptor (C5aR) antagonist/agonist. Based on experimental data obtained using RP S19 analog peptide and recombinant protein monomer, we suggested that L131DR, I134AGQVAAAN and K143KH moieties in the RP S19 C‐terminus act in, respectively, C5aR binding, penetration of the plasma membrane, and interaction with either an apoptosis-inducing molecule in neutrophils (delta lactoferrin) or a calcium channel-activating molecule (annexin A3) to induce the p38 MAPK pathway in macrophages. Recently, we observed RP S19 trimer in serum. To study the effects of this RP S19 trimer on C5aR, we prepared mutant RP S19 C‐terminal peptide (RP S19122-145) dimer and trimer, and examined their chemotactic activities and signal transduction pathways in human C5aR-overexpressing squamous cell carcinoma HSC-1 (HSC-1C5aR) cells using 24 trans-well chamber and western blotting assays, respectively. HSC-1C5aR cells were attracted by RP S19122-145 dimer and vice versa by RP S19122-145 trimer. The RP S19122-145 dimer-induced attraction was competitively blocked by pre-treatment with RP S19122-145 trimer. Moreover, RP S19122-145 trimer-induced p38 MAPK phosphorylation was stronger than RP S19122-145 dimer-induced p38 MAPK phosphorylation. RP S19122-145 trimer appeared to act as a C5aR antagonist. The agonistic and antagonistic effects of RP S19122-145 dimers and trimers were reflected by monocytic, THP-1-derived macrophage-like cells. Unlike the C5aR agonist C5a, which acts at the inflammation phase of acute inflammation, RP S19 trimer might act as a C5aR antagonist at the resolution phase
    corecore