1,715 research outputs found

    Analytical and experimental studies of thermionically emitting electrodes in contact with dense, seeded plasmas

    Get PDF
    Interactions are considered between a moving, alkali-metal seeded, dense plasma and a metallic electrode whose surface properties are influenced by the absorption of seed particles. The plasma behavior is governed by a set of differential equations, which are coupled to the surface through the boundary conditions. These conditions are obtained by utilizing the particle desorption rate expressions of Levine and Gyftopoulos. The solution of the problem yields the state of the surface as well as the spatial distribution of plasma properties. In particular, electrode voltage drops are predicted, which indicate whether the electrode operates in a thermionic or arc mode. The method has been applied to a potassiwn-seeded argon plasma in contact with a tungsten electrode in a stagnation flow geometry. The results show that the plasma - surface interaction may lead to large electrode currents at moderate voltage drops. These currents can be up to an order of magnitude greater than what the random electron current would be at the surface under conditions of perfect thermodynamic equilibrium at the surface temperature. R.esults of a comparable experiment show reasonably good agreement with the theory

    Keck Speckle Imaging of the White Dwarf G29-38: No Brown Dwarf Companion Detected

    Get PDF
    The white dwarf Giclas 29-38 has attracted much attention due to its large infrared excess and the suggestion that excess might be due to a companion brown dwarf. We observed this object using speckle interferometry at the Keck telescope, obtaining diffraction-limited resolution (55 milliarcseconds) at K band, and found it unresolved. Assuming the entire K band excess is due to a single point-like companion, we place an upper limit on the binary separation of 30 milliarcseconds, or 0.42 AU at the star's distance of 14.1 pc. This result, combined with astroseismological data and other images of G29-38, supports the hypothesis that the source of the near-infrared excess is not a cool companion but a dust cloud.Comment: 7 pages, 2 figure

    The pre-cataclysmic variable, LTT 560

    Get PDF
    Aims. System parameters of the object LTT560 are determined in order to clarify its nature and evolutionary status. Methods. We apply time-series photometry to reveal orbital modulations of the light curve, time-series spectroscopy to measure radial velocities of features from both the primary and the secondary star, and flux-calibrated spectroscopy to derive temperatures of both components. Results. We find that LTT 560 is composed of a low temperature (T ∌ 7500 K) DA white dwarf as the primary and an M5.5±1 mainsequence star as the secondary component. The current orbital period is Porb = 3.54(07) h.We derive a mass ratio Msec/Mwd = 0.36(03) and estimate the distance to d = 25–40 pc. Long-term variation of the orbital light curve and an additional Hα emission component on the white dwarf indicate activity in the system, probably in the form of flaring and/or accretion events

    Contribution of White Dwarfs to Cluster Masses

    Get PDF
    I present a literature search through 31 July 1997 of white dwarfs (WDs) in open and globular clusters. There are 36 single WDs and 5 WDs in binaries known among 13 open clusters, and 340 single WDs and 11 WDs in binaries known among 11 globular clusters. From these data I have calculated WD mass fractions for four open clusters (the Pleiades, NGC 2168, NGC 3532, and the Hyades) and one globular cluster (NGC 6121). I develop a simple model of cluster evolution that incorporates stellar evolution but not dynamical evolution to interpret the WD mass fractions. I augment the results of my simple model with N-body simulations incorporating stellar evolution (Terlevich 1987; de la Feunte Marcos 1996; Vesperini & Heggie 1997). I find that even though these clusters undergo moderate to strong kinematical evolution the WD mass fraction is relatively insensitive to kinematical evolution. By comparing the cluster mass functions to that of the Galactic disk, and incorporating plausibility arguments for the mass function of the Galactic halo, I estimate the WD mass fraction in these two populations. I assume the Galactic disk is ~10 Gyrs old (Winget et al. 1987; Liebert, Dahn, & Monet 1988; Oswalt et al. 1996) and that the Galactic halo is ~12 Gyrs old (Reid 1997b; Gratton et al. 1997; Chaboyer et al. 1998), although the WD mass fraction is insensitive to age in this range. I find that the Galactic halo should contain 8 to 9% (alpha = -2.35) or perhaps as much as 15 to 17% (alpha = -2.0) of its stellar mass in the form of WDs. The Galactic disk WD mass fraction should be 6 to 7% (alpha = -2.35), consistent with the empirical estimates of 3 to 7% (Liebert, Dahn, & Monet 1988; Oswalt et al. 1996). (abridged)Comment: 20 pages, uuencoded gunzip'ed latex + 3 postscrip figures, to be published in AJ, April, 199

    Mode identification of Pulsating White Dwarfs using the HST

    Full text link
    We have obtained time-resolved ultraviolet spectroscopy for the pulsating DAV stars G226-29 and G185-32, and for the pulsating DBV star PG1351+489 with the Hubble Space Telescope Faint Object Spectrograph, to compare the ultraviolet to the optical pulsation amplitude and determine the pulsation indices. We find that for essentially all observed pulsation modes, the amplitude rises to the ultraviolet as the theoretical models predict for l=1 non-radial g-modes. We do not find any pulsation mode visible only in the ultraviolet, nor any modes whose phase flips by 180 degrees; in the ultraviolet, as would be expected if high l pulsations were excited. We find one periodicity in the light curve of G185-32, at 141 s, which does not fit theoretical models for the change of amplitude with wavelength of g-mode pulsations.Comment: Accepted for publication in the Astrophysical Journal, Aug 200

    Mouse maps of gene expression in the brain

    Get PDF
    Comprehensive atlases of gene expression in the mouse brain will provide a great resource for neurobiology

    The Ratio of Helium- to Hydrogen-Atmosphere White Dwarfs: Direct Evidence for Convective Mixing

    Full text link
    We determine the ratio of helium- to hydrogen-atmosphere white dwarf stars as a function of effective temperature from a model atmosphere analysis of the infrared photometric data from the Two Micron All Sky Survey combined with available visual magnitudes. Our study surpasses any previous analysis of this kind both in terms of the accuracy of the Teff determinations as well as the size of the sample. We observe that the ratio of helium- to hydrogen-atmosphere white dwarfs increases gradually from a constant value of ~0.25 between Teff = 15,000 K and 10,000 K to a value twice as large in the range 10,000 > Teff > 8000 K, suggesting that convective mixing, which occurs when the bottom of the hydrogen convection zone reaches the underlying convective helium envelope, is responsible for this gradual transition. The comparison of our results with an approximate model used to describe the outcome of this convective mixing process implies hydrogen mass layers in the range log M_H/M_tot = -10 to -8 for about 15% of the DA stars that survived the DA to DB transition near Teff ~ 30,000 K, the remainder having presumably more massive layers above log M_H/M_tot ~ -6.Comment: 30 pages, 11 figures, accepted for publication in the Astrophysical Journa

    White Dwarfs in Globular Clusters: HST Observations of M4

    Get PDF
    Using WFPC2 on the Hubble Space Telescope, we have isolated a sample of 258 white dwarfs (WDs) in the Galactic globular cluster M4. Fields at three radial distances from the cluster center were observed and sizeable WD populations were found in all three. The location of these WDs in the color-magnitude diagram, their mean mass of 0.51(±0.03 \pm 0.03)M⊙_{\odot}, and their luminosity function confirm basic tenets of stellar evolution theory and support the results from current WD cooling theory. The WDs are used to extend the cluster main-sequence mass function upward to stars that have already completed their nuclear evolution. The WD/red dwarf binary frequency in M4 is investigated and found to be at most a few percent of all the main-sequence stars. The most ancient WDs found are about 9 Gyr old, a level which is set solely by the photometric limits of our data. Even though this is less than the age of M4, we discuss how these cooling WDs can eventually be used to check the turnoff ages of globular clusters and hence constrain the age of the Universe.Comment: 46 pages, latex, no figures included, figures available at ftp://ftp.astro.ubc.ca/pub/richer/wdfig.uu size 2.7Mb. To be published in the Astrophysical Journa

    New Insights into the Problem of the Surface Gravity Distribution of Cool DA White Dwarfs

    Full text link
    We review at length the longstanding problem in the spectroscopic analysis of cool hydrogen-line (DA) white dwarfs (Teff < 13,000 K) where gravities are significantly higher than those found in hotter DA stars. The first solution that has been proposed for this problem is a mild and systematic helium contamination from convective mixing that would mimic the high gravities. We constrain this scenario by determining the helium abundances in six cool DA white dwarfs using high-resolution spectra from the Keck I 10-m telescope. We obtain no detections, with upper limits as low as He/H = 0.04 in some cases. This allows us to put this scenario to rest for good. We also extend our model grid to lower temperatures using improved Stark profiles with non-ideal gas effects from Tremblay & Bergeron and find that the gravity distribution of cool objects remains suspiciously high. Finally, we find that photometric masses are, on average, in agreement with expected values, and that the high-log g problem is so far unique to the spectroscopic approach.Comment: 44 pages, 14 figures, accepted for publication in the Astrophysical Journa
    • 

    corecore