13,894 research outputs found
Parallel and convergent processing in grid cell, head-direction cell, boundary cell, and place cell networks.
The brain is able to construct internal representations that correspond to external spatial coordinates. Such brain maps of the external spatial topography may support a number of cognitive functions, including navigation and memory. The neuronal building block of brain maps are place cells, which are found throughout the hippocampus of rodents and, in a lower proportion, primates. Place cells typically fire in one or few restricted areas of space, and each area where a cell fires can range, along the dorsoventral axis of the hippocampus, from 30 cm to at least several meters. The sensory processing streams that give rise to hippocampal place cells are not fully understood, but substantial progress has been made in characterizing the entorhinal cortex, which is the gateway between neocortical areas and the hippocampus. Entorhinal neurons have diverse spatial firing characteristics, and the different entorhinal cell types converge in the hippocampus to give rise to a single, spatially modulated cell type-the place cell. We therefore suggest that parallel information processing in different classes of cells-as is typically observed at lower levels of sensory processing-continues up into higher level association cortices, including those that provide the inputs to hippocampus. WIREs Cogn Sci 2014, 5:207-219. doi: 10.1002/wcs.1272 Conflict of interest: The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website
Modelling Correlation in Carbon and Energy Markets
The paper examines correlations between daily returns of month-ahead baseload electricity, fuel input and carbon emission allowance (EU-ETS) prices for Great Britain. The perspective of a CCGT plant operator is assumed, producing baseload electricity with natural gas and emission allowances and selling output forward in the month-ahead market. Price correlation between power, natural gas and emission allowances as well as their dynamic behaviour is essential for the extent to which cashflows from CCGT plants are self-hedged. Switching between input fuels with different carbon intensities is taken as the fundamental driver of this correlation. Relative marginal power generation costs are used to construct carbon price regimes during which no switching takes place. The regimes are then used as explanatory variables in a dynamic conditional correlation model. Using daily observations of month-ahead prices from April 2005 to August 2010, the results suggest that extreme weather, high commodity market volatility and seasons have no effect on correlation. However, there is evidence of significant price decoupling during periods of extreme relative carbon, coal and natural gas prices
Recommended from our members
Modelling Correlation in Carbon and Energy Markets
The paper examines correlations between daily returns of month-ahead baseload electricity, fuel input and carbon emission allowance (EU-ETS) prices for Great Britain. The perspective of a CCGT plant operator is assumed, producing baseload electricity with natural gas and emission allowances and selling output forward in the month-ahead market. Price correlation between power, natural gas and emission allowances as well as their dynamic behaviour is essential for the extent to which cashflows from CCGT plants are self-hedged. Switching between input fuels with different carbon intensities is taken as the fundamental driver of this correlation. Relative marginal power generation costs are used to construct carbon price regimes during which no switching takes place. The regimes are then used as explanatory variables in a dynamic conditional correlation model. Using daily observations of month-ahead prices from April 2005 to August 2010, the results suggest that extreme weather, high commodity market volatility and seasons have no effect on correlation. However, there is evidence of significant price decoupling during periods of extreme relative carbon, coal and natural gas prices
How robust is a thermal photon interpretation of the ALICE low-p_T data?
We present a rigorous theoretical analysis of the ALICE measurement of
low-p_T direct-photon production in central lead-lead collisions at the LHC
with a centre-of-mass energy of \sqrt{s_{NN}}=2.76 TeV. Using NLO QCD, we
compute the relative contributions to prompt-photon production from different
initial and final states and the theoretical uncertainties coming from
independent variations of the renormalisation and factorisation scales, the
nuclear parton densities and the fragmentation functions. Based on different
fits to the unsubtracted and prompt-photon subtracted ALICE data, we
consistently find T = 304 \pm 58 MeV and 309 \pm 64 MeV for the effective
temperature of the quark-gluon plasma (or hot medium) at p_T \in [0.8;2.2] GeV
and p_T \in [1.5;3.5] GeV as well as a power-law (p_T^{-4}) behavior for p_T >
4 GeV as predicted by QCD hard scattering.Comment: 18 pages, 7 figures, 1 tabl
New Results on e+e- Line Emission in U+Ta Collisions
We present new results obtained from a series of follow-up e+e- coincidence
measurements in heavy-ion collisions, utilizing an improved experimental set-up
at the double-Orange beta-spectrometer of GSI. The collision system U+Ta was
reinvestigated in three independent runs at beam energies in the range
(6.0-6.4)xA MeV and different target thicknesses, with the objective to
reproduce a narrow sum-energy e+e- line at ~635 keV observed previously in this
collision system. At improved statistical accuracy, the line could not be found
in these new data. For the ''fission'' scenario, an upper limit (1 sigma) on
its production probability per collision of 1.3x10^{-8} can be set which has to
be compared to the previously reported value of [4.9 +- 0.8 (stat.) +- 1.0
(syst)]x10^{-7}. In the light of the new results, a reanalysis of the old data
shows that the continuous part of the spectrum at the line position is
significantly higher than previously assumed, thus reducing the production
probability of the line by a factor of two and its statistical significance to
< 3.4sigma.Comment: 15 pages, standard LaTeX with 3 included PS figures; Submitted to
Physics Letters
First Energy and Angle differential Measurements of e^+e^- -pairs emitted by Internal Pair Conversion of excited Heavy Nuclei
We present the first energy and angle resolved measurements of e+e- pairs
emitted from heavy nuclei (Z>=40) at rest by internal pair conversion (IPC) of
transitions with energies of less than 2MeV as well as recent theoretical
results using the DWBA method, which takes full account of relativistic
effects, magnetic substates and finite size of the nucleus. The 1.76MeV E0
transition in Zr90 (Sr source) and the 1.77MeV M1 transition in Pb207 (Bi
source) have been investigated experimentally using the essentially improved
set-up at the double-ORANGE beta-spectrometer of GSI. The measurements prove
the capability of the setup to cleanly identify the IPC pairs in the presence
of five orders of magnitude higher beta- and gamma background from the same
source and to yield essentially background-free sum spectra despite the large
background. Using the ability of the ORANGE setup to directly determine the
opening angle of the e+e- pairs, the angular correlation of the emitted pairs
was measured. In the Zr90 case the correlation could be deduced for a wide
range of energy differences of the pairs. The Zr90 results are in good
agreement with recent theory. The angular correlation deduced for the M1
transition in Pb207 is in strong disagreement with theoretical predictions
derived within the Born approximation and shows almost isotropic character.
This is again in agreement with the new theoretical results.Comment: LaTeX, 28 pages incl. 10 PS figures; Accepted by Z.Phys.
Laser and microwave spectroscopy of even-parity Rydberg states of neutral ytterbium and Multichannel Quantum Defect Theory analysis
New measurements of high-lying even parity and
levels of neutral Yb are presented in this paper.
Spectroscopy is performed by a two-step laser excitation from the ground state
, and the Rydberg levels are detected by using the
field ionization method. Additional two-photon microwave spectroscopy is used
to improve the relative energy accuracy where possible. The spectroscopic
measurements are complemented by a multichannel quantum defect theory (MQDT)
analysis for the J=0 and the two-coupled J=2 even parity series. We compare our
results with the previous analysis of Aymar {\it{et al}} \cite{Aymar_1980} and
analyze the observed differences. From the new MQDT models, a revised value for
the first ionization limit cm is proposed.Comment: 15 pages, 3 figure
- …