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1 Introduction

In January 2005, the European Union Emission Trading Scheme (EU-ETS) was launched, es-

tablishing a price for CO2 (carbon dioxide) emissions. Due to its large share in total EU CO2

emissions, the power generation industry is significantly impacted by carbon pricing. Marginal

costs of power generation are directly affected by the price of carbon. The cost of producing one

unit of electricity, based on fossil fuel generation, is now a function not only of the fuel price and

the power plant’s thermal efficiency, but also of the carbon price and the fuel’s carbon density.

The focus of this study lies on baseload electricity in the United Kingdom, which is to a large

extent generated using Combined Cycle Gas Turbines (CCGT), Wright (2006). The energy needs

of baseload generators are mainly covered in forward markets, due to the high associated storage

costs of natural gas and hard coal. Furthermore, electricity cannot be stored without significant

losses and only over a short period of time and so baseload generators also sell a proportion

of their output in forward power markets. The purchase of forward energy as well as the sale

of forward power contracts allows the generator to lock in a given amount of profit per unit

of electricity produced, that is the generator hedges the risk of unfavourable price movements

in both energy and power markets. Following Roques et al. (2008), the cash-flows of a CCGT

plant are self-hedged to the extent that power, natural gas and carbon prices naturally co-move.

In particular, if higher gas and carbon prices are associated with higher power prices, that is

there is strong positive co-movement, then fuel price changes may be profit neutral. It becomes

∗I would like to thank my supervisor Dr. Melvyn Weeks for most valuable guidance. Further, I would like
to thank my research advisor Prof. David Newbery, Dr. Michael Politt, Prof. Benjamin Hobbs as well as
anonymous referees of this working paper series for helpful advice. I gratefully acknowledge my research funding
by the Economics and Social Research Council (ESRC). The software programs used in this paper were written in
Matlab. They are modifications of the UCSD GARCH toolbox kindly provided by Kevin Sheppard (Oxford). The
program code is available upon request. All errors are my own. Comments are welcome.
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immediately obvious that the extent to which the cash-flow of a CCGT plant is self-hedged

critically depends on the nature of the co-movement of natural gas, carbon and power prices.

Co-movement between prices for input fuels and the price of CO2 emission allowances is the

result of the ability to switch between input fuels in power generation, especially between hard

coal and natural gas. It is commonly measured as correlation and is not only used in hedging

decisions of power generators.

Correlations between power, carbon and fuel prices are also used in optimization of power

generation plant portfolios. Roques et al. (2008) use cross-correlations and standard deviations of

UK quarter-ahead fuel, power and carbon prices in a Monte-Carlo simulation of power plant net

present values. They point out that, under certain circumstances regarding access to capital and

the failure to secure long-term power purchase agreements, the correlation between electricity,

gas and carbon markets makes ’pure’ portfolios of gas power plants more attractive than diver-

sified plant portfolios. Correlations are therefore not only important for hedging decisions on

the individual plant level, but are also taken into considerations when evaluating initial capital

investment decisions.

However, the relationship between the prices of natural gas, carbon emission allowances and

electricity is not constant. This study will show that there are periods when the carbon, natural

gas and power prices decouple. This reduces their co-movement and therefore the degree to which

a CCGT plant is self-hedged. The ambition of this study is not to explicitly model the process

driving baseload electricity prices, nor the prices for carbon emission allowances or natural gas.

Rather, it will contribute to the literature in three ways. First, it will show that the pairwise

correlations of energy, carbon and power prices are not constant over time. Second, it will analyze

the effects of extreme weather conditions, commodity market volatility and seasonal effects on

the pairwise correlations. Thirdly, it will identify periods in which the absence of an economic

incentive to switch input fuels leads to a decoupling of prices and a reduction in correlation. All

three aspects affect the degree of self-hedging of a CCGT power plant.

In order to model correlation and its drivers, this paper shall follow the literature in empirical

financial econometrics by estimating an extended Dynamic Conditional Correlation model, based

on daily observations of month-ahead energy, power and carbon futures returns.

The rest of this study is structured as follows. Section 2 describes the European Emissions

Trading Scheme (EU-ETS) and its effect on the power generation industry. Previous research,

with regard to both general carbon markets and short-run carbon price dynamics, is presented in

section 3. Section 4 motivates the focus on energy and carbon market correlation and describes

its role in the variability of marginal power generation costs. Further, it outlines the economic

reasoning behind correlation regimes and defines them formally. Based on this definition, the

working hypothesis will be formulated. The data and its characteristics will be discussed in

section 5, which also calibrates the correlation regimes to the UK power market. Section 6

outlines the basic estimation framework. Finally, section 7 presents the estimation results and

section 8 concludes. Details on extensions of the basic econometric framework as well as tabulated
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estimation results are provided in appendices A and B respectively.

2 The EU Emissions Trading Scheme

The EU-ETS is the biggest international carbon emission cap-and-trade system and aims to

facilite the 1997 Kyoto Protocol emission reduction targets, by which the EU has to reduce its

carbon emissions 8 % below their 1990 level by 2012.

The EU-ETS covers about 50% of total EU CO2 and 40% of total EU greenhouse gas (GHG)

emissions and became operational in January 2005. It includes the 27 EU member countries as

well as Iceland, Liechtenstein and Norway. Based on a company-level, the system covers around

12,000 heavy-energy consuming installations1 in the power sector and manufacturing 2, for all of

whom participation is mandatory.

In theory, the cap-and-trade system creates incentives to reduce carbon emissions where it

is least costly. This is achieved by introducing tradable emission permits, so-called European

Union Allowances (EUA). An EUA grants the right to emit one metric tonne of CO2 into the

atmosphere and is priced in e/tCO2. At the end of each year the covered installations have to

deliver a number of EUAs corresponding to their verified annual emissions. Companies that fall

short or exceed their allocated annual emission level can either buy extra allowances or sell any

surplus on an over-the-counter (OTC) market or on a public exchange.

Since its beginning, the EU-ETS has been segmented into several trading periods. Phase I

lasted from January 2005 until the end of 2007. It was generally regarded as a pilot phase during

which several structural adjustments have taken place. Phase II started in January 2008 and will

end in December 2012. Phase III will start in January 2013 and will last until December 2020.

During Phase I, there was an inter-phase banking restriction, such that unused emission

allowances could not be brought forward into Phase II, and only intra-phase banking was allowed.

In Phase II the banking restriction is removed and unused EUAs can be carried over into Phase

III. The removal of the inter-phase banking restriction connects the price of EUA spot contracts

of all trading periods and the price of futures contracts with maturity in subsequent trading

periods can be connected to the current spot price via arbitrage considerations.

In the EU-ETS there is a high concentration of carbon emissions to a small number of in-

stallations, most of which belong to the power generation sector. It received approximately 55 %

of total allowances in the first phase3 and is responsible for more than a third of total EU CO2

emissions. Therefore, the power and heat generation industry must be regarded as a key player

in the EU-ETS, whose behaviour greatly influences carbon price dynamics.

Main carbon price drivers can be categorized in forces of either allowance supply or demand.

Hereby, key supply factors are the number of emission allowances, allocated to individual instal-

lations in National Allocation Plans (NAPs) by the European Union, as well as other regulatory

1Installations are power generation or manufacturing plants with a rated thermal capacity in excess of 20MW.
2See EU-Commission (2009).
3See Chen et al. (2008).
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uncertainties. The demand side, however, is more dynamic. Given the size of the power sector

in the EU-ETS, allowance demand is strongly influenced by the demand for electricity. As a re-

sult, factors that influence the demand for electricity, such as (extreme) temperatures (heating),

seasonality (lighting) and general economic activity, are also thought to drive the demand for

carbon emission allowances4. Further, there is an electricity supply side element, which signif-

icantly influences demand for carbon emission allowances, namely relative fuel prices. Given a

constant level of electricity demand, changes in the relative price of power generation fuels can

affect allowance demand. Section 2.1 analyses this key factor in more detail, providing a formal

definition of marginal power generation costs, as well as of the switch point between competing

generation technologies. Finally, section 2.2 will outline how the level of competition and gen-

eration fuel mix make the preceding theoretical analysis particularly relevant to the UK power

market.

2.1 Marginal Generation Cost and the Switch Point

The typical European power generator has a generation plant portfolio, which may contain nu-

clear, gas and coal plants as well as generation from renewable sources such as wind and hydro.

Relative marginal power generation costs determine which plant will serve to produce baseload

electricity and which peakload5.

A formal definition of marginal power generation costs is given by Newbery (2005). Let MCi

be the marginal generation cost in e/GJe of generating a given unit of electricity, burning fuel

i. It is given by

MCi =
FCi

ηi
+
EFi

ηi
· EC (1)

where FCi is the fuel cost in e/GJ , ηi is the plant net thermal efficiency in GJe/GJ
6, EFi is the

GHG emission factor in kgCO2/GJ and EC is the GHG emission cost in e/kgCO2
7.

In the context of the EU-ETS, EC is the cost of carbon emissions as determined by the price of

an EUA. The first part of equation (1) represents fuel-costs. Here, a higher thermal efficiency of

the power plant or lower fuel costs result in lower marginal costs. The second half of equation (1)

is the part of marginal generation cost that results from taking into account the price of carbon

emissions. Here, lower thermal efficiency, a higher emission factor or higher costs of emission

allowances drive up the marginal generation cost. Hence, the EU-ETS increases marginal costs

of carbon intensive generation technologies compared to cleaner alternatives, such as nuclear,

4E.g., see Alberola et al. (2008).
5Baseload is the minimum power demand in the system. It might fluctuate over time, however, it is based

on reasonable expectations of minimum customer demand. Peakload refers to peak electricity demand. Baseload
power plants do not adapt power output to match changes in daily consumption patterns. They are typically
characterized by low marginal generation costs and high reliability, CIPCO (2009).

6GJe refers to power output in gigajoule of electricity, GJ to power input in gigajoule of fuel.
7Eq.(1) is a simplification. MCi is primarily determined by the variable costs of fuel and CO2. However, there

are other marginal cost contributors such as the variable cost of operating assets, RWE (2009).
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wind or hydro.

Marginal power generation costs are obtained for all power plants in the portfolio. Plants are

then ranked in order of ascending marginal costs, called the merit order, and profit maximizing

producers start generating from the plant with lowest marginal cost. As demand increases, plants

are added following the order of merit.

Theoretically, daily changes in fuel and carbon prices can change merit order through their

effect on relative marginal generation costs. Given a constant demand for electricity, a change

in the merit order results in changes in the annual carbon demand of producers, as they switch

between input fuels with different carbon dioxide emission factors. This so-called fuel-switching

has a direct impact on their position in the carbon emission allowance market. It is therefore

reasonable to assume that producers will operate in either the OTC or the exchange traded

emissions markets to react to changes in their carbon demand8. These operations can affect the

price of EUAs significantly, given the scale of the power sector in the EU-ETS.

As discussed above, fuel-switching is driven by relative fuel and carbon emission allowance

price changes. The question arises: when exactly does merit order change and are input fuels

switched?

For the purpose of illustration, consider two competing generation technologies, hard coal and

natural gas, and note that the emission factor of hard coal is approximately twice that of natural

gas. Setting their marginal generation costs equal to each other and solving for the emission cost

EC gives

EC =
ηcoal · FCgas − ηgas · FCcoal

ηgas · EFcoal − ηcoal · EFgas
(2)

This is defined as the switch point by Newbery (2005) and Sijm et al. (2007). The switch

point is a theoretical carbon price above which it is more profitable to burn natural gas than coal,

and below which the reverse is true. If the observed price of carbon emissions, as determined by

the price of an EUA, is equal to the switch point price EC, then marginal generation costs using

hard coal and natural gas are indeed equal to each other.

Assume that in a situation like this, there is an increase in the price of natural gas, all else

constant. Theoretically, this will increase the marginal generation costs of producing electricity

by burning gas and leave the marginal generation cost of coal unchanged. Hence, coal is now

preferred over gas as reflected in the change of merit order. Resulting carbon emissions will

increase due to the significantly higher emission factor of coal, which will increase the price of

carbon allowances9.

For this to happen, initial marginal generation costs of gas and coal do indeed have to be

8Following Bunn and Fezzi (2007), agents (e.g. power generators) trade in the daily carbon market according
to their dynamic expectations of the annual equilibrium carbon price.

9This assumes that before the price increase of natural gas, the marginal generation technology was either gas or
coal, i.e. power demand was at an intermediate level. If the marginal generation technology is nuclear, in cases of
very low power demand, changes in the merit order do not affect carbon emissions. In the case of very high power
demand, all existing plants are fully utilized and, again, changes in merit order do not affect carbon emissions.
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equal or reasonably close to each other. This is equivalent to the requirement that the observed

carbon price is equal to or close to the switch price in equation (2). In this situation, changes in

the relative fuel prices may change merit order.

If the carbon price is significantly above or below the switch price in equation (2), then

marginal generation costs of coal and gas are sufficiently apart such that small changes in fuel

prices should not result in changes of relative profitability of the two technologies. In this situation

merit order is static. Hence, no fuel-switching occurs and, all else constant, demand for carbon

emission allowances remains unchanged.

2.2 Market Competition and Generation Fuel Mix in the United Kingdom

The previous sections outlined the significance of relative marginal costs of hard coal and natural

gas generation for the merit order and subsequent demand for carbon emission allowances. For

this analysis to be representative of existing market dynamics, two conditions in the electricity

market structure have to hold, namely a high level of supply-side competition and an adequate

generation fuel mix.

First, consider the generation fuel mix. Figure 1 exhibits the German and UK power genera-

tion fuel mix, reflecting usage of installed generation capacity. The two hydrocarbon fuels, whose

price interactions with carbon emission allowances are under consideration in this study, natural

gas and hard coal, together account for approximately 35% of total fuel input in Germany. At

approximately 73% this share is much higher in the UK, which is attributed to the significant role

of lignite in Germany. Lignite generation was responsible for roughly a quarter of total German

power supply in 2007, RWE (2008). Following Zachmann (2007), power plant start up costs,

as well as cost for reserve capacity are more important in an electricity system that is based to

a larger degree on coal and lignite generation. Therefore, modelling changes in merit order as

based on changes in relative marginal costs alone appears more adequate in the case of the UK

market. Second, consider the level of supply-side competition. As a key member of the EU-ETS,

22%

12%

10%

23%

8%

25%

Hard Coal

Total Supply 
637 TWh

Lignite

Other
Renewables

Natural Gas

Nuclear

(a) Germany 2007 - Source: RWE (2008)

28%

18%7%
2%

45%
Hard Coal

Natural Gas

Total Supply
379 TWh

Nuclear
Other

Renewables

(b) UK 2009 - Source: DECC (2010)

Figure 1: Fuel Mix Power Generation
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the United Kingdom has experience with privatized electricity markets since the 1990s10. It has

built a competitive supply industry with a relatively low level of market concentration, in which

the number of major power producers is much higher when compared to other major EU-ETS

members, such as Germany11. Low market concentration and the relatively low degree of integra-

tion with Continental European electricity markets means that the British power prices are set

according to marginal generation costs in Great Britain and only possess a weak link to marginal

generation costs on the European Continent. High degree of power market integration on the

Continent does not permit this conclusion for Continental European power prices. For example,

the German power market is relatively well integrated with those of France and the Netherlands.

As a result, the marginal (price-setting) fuel in Germany might differ from what is suggested by

the German fuel mix, facilitated by cross-border electricity trade.

Finally, the market for natural gas in the UK has reached a higher level of maturity and

possesses weaker links to the price of oil, when compared to oil-indexed natural gas on the

European continent.

Both the adequate fuel mix and the high level of market competition ensure a higher de-

pendence of British electricity prices on short-run marginal generation costs, namely those of

coal and gas generation. Therefore, Great Britain appears particular suitable for the following

empirical investigation, which justifies the use of market data relevant to the British electricity

sector12.

3 Previous Literature on Carbon Markets

3.1 General Carbon Market Research

Since the beginning of the EU-ETS in 2005, the amount of carbon and climate change related

research has continuously increased.

A key field in the literature is hereby the prediction of a medium- to long-term carbon price

as this informs current investment decisions. This objective is often approached by marginal

abatement cost models. Marginal abatement costs are the costs incurred by a firm when reducing

their GHG emission by one extra unit, Klepper and Peterson (2006). In theory, these costs should

determine the market price for CO2. Therefore, attempting to predict the marginal abatement

cost provides a measure for future carbon prices.

In a broader scope, integrated assessment models (IAMs) combine insights from scientific and

economic modeling in order to predict a carbon price. Depending on the underlying assumptions

and global emission reduction scenarios, IAM predictions are subject to a very high range and

therefore difficult to interpret for policymakers and industry professionals13.

10Newbery (1999) provides a thorough account of the restructuring process of UK gas and electricity sectors.
11See DECC (2010).
12Please see section 5 for details on all data used.
13See Bole (2009) for an extensive review of IAM predicitons of the carbon price.
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Another area of research is directly concerned with the connection of the EU-ETS and the

power generation sector. The implications of carbon-trading for the electricity price as well as

pass-through of abatement costs are discussed in Sijm et al. (2006), Sijm et al. (2007) and Chen

et al. (2008). Delarue and D’Haeseleer (2008) and Delarue et al. (2008) give special attention to

fuel-switching behaviour of the European power sector and resulting short-term carbon abatement

opportunities.

For a comprehensive overview of a wide range of model approaches to GHG emission markets,

see Springer (2003). Beyond IAMs and carbon trading models, which will be discussed in section

3.2, Springer (2003) discusses three further categories of carbon price models: computable general

equilibrium models, Neo-Keynesian macroeconomic models and energy system models.

3.2 Short-Run Carbon Price Dynamics

Despite the significance of the above carbon price models for medium- to long-term market

perspectives, they don’t account for the short-run price determinants in carbon spot and futures

markets. After all, spot EUAs and futures are traded as financial assets on public exchanges or

OTC and are therefore subject to an extended range of fundamentals. There is a field of research,

which uses financial econometric techniques to identify these fundamentals and quantify their

influence on both levels and volatility of emission allowance returns.

First, consider the carbon price level. As the supply of emission allowances is fixed, changes in

demand are critical for price setting. The removal of the inter-phase banking restriction ensured

the durability of emission allowances and underlined the significance of expectations. Only those

factors which deviate from expectations should affect the price of an emission allowance. Previous

research has identified four carbon market fundamentals, whose deviations from expectations

greatly influence the price of an EUA. They are the regulatory design of the EU-ETS, energy

prices, weather conditions and economic growth, through its effect on power demand.

The effect of weather conditions and energy prices on carbon prices has been investigated

by Mansanet-Bataller et al. (2007) and Alberola et al. (2008). Mansanet-Bataller et al. (2007)

use deviations of temperature indices from their seasonal averages to calculate periods of unan-

ticipated extremely hot and cold days. These are thought to influence the daily carbon spot

price returns through their effect on electricity demand. Their findings suggest that only extreme

deviations from expected weather conditions have explanatory power, as they result in a higher

than expected demand for electricity and therefore emission allowances.

In addition to weather conditions, forward energy prices play a key role for carbon prices. As

opposed to EUAs, which are storable at the cost of interest, hydrocarbon fuels have additional

costs of carry, mainly due to storage. Therefore, most energy needs of the power generation

sector are met in forward markets and price changes reflect changes in industrial expectation,

Alberola et al. (2008). For example, an unexpected shortfall in domestic natural gas production

might increase its price both in spot and future markets and therefore simulate a move from gas

to hard coal power generation, resulting in a higher than expected demand for carbon emission
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allowances. This will increase the prices of EUAs. Both Mansanet-Bataller et al. (2007) and

Alberola et al. (2008) investigated the connection of forward price changes of emission intensive

hydrocarbon fuels, such as coal and natural gas, and the price of emission allowances. Their

results confirms the essential role forward energy prices play in the pricing of carbon emission

allowances.

The effect of energy prices on carbon has further been confirmed by Bunn and Fezzi (2007).

They studied the impact of the EU-ETS on the wholesale electricity market in the United King-

dom. The results of a co-integrated VAR estimation highlight the essential role of energy prices,

especially that of natural gas, in determining the price of emission allowances14.

The effect of regulatory design issues of the EU-ETS on the carbon price level was investigated

by Alberola et al. (2008), Daskalakis et al. (2009) and Alberola and Chevallier (2007). Alberola

et al. (2008) identify a structural break in the carbon price series during April 2006, following the

report of verified emissions for 2005. The report pointed to a significant oversupply of allowances

during 2005, which lead to a subsequent spot price collapse. Alberola and Chevallier (2007) and

Daskalakis et al. (2009) estimate the effect of the banking restriction on the Phase I EUA price.

Their findings suggest that the banking restriction undermines the ability of the EUA to provide

an efficient carbon price signal.

The sensitivity of carbon price returns to changes in macroeconomic conditions is analyzed

in Chevallier (2009). Variables with forecast power for equity and commodity returns are used

in order to investigate whether carbon futures returns may be weakly forecast. While accounting

for the potential impact of the 2007 financial crisis, his findings suggest that the carbon market

is only remotely influenced by changes in the macroeconomic environment. However, the results

confirm previous work with regard to the high significance of energy prices.

While most studies have focussed their attention on the fundamentals that drive carbon price

returns, little work has been done on the drivers of volatility.

Benz and Trueck (2009) estimate a regime-switching volatility model, in which the switch

mechanism is driven by a latent Markov process, rather than by observed fundamentals. Their

findings suggest that volatility behaves in different phases, which are driven by fluctuations in

the underlying demand for CO2. They further maintain that expectations of future regulatory

design and allowance allocation is an essential market driver and that the resulting uncertainty

is reflected in sharp jumps in the carbon price process, which greatly increases volatility.

The effects on carbon volatility due to the introduction of carbon options has been examined

by Chevallier et al. (2009). They apply various econometric specifications and structural break

tests to daily carbon returns for the period 2005-2008. Further, they estimate the effect of energy

prices and global commodity markets on carbon price volatility. Their results show although

volatility has changed over the sample period, the change cannot be attributed to the introduction

of EUA options.

Carbon and energy volatility spill-overs are investigated by Mansanet-Bataller and Soriano

14Further evidence in the support of this claim can be found in Kanen (2006).
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(2009). Given the empirically documented link between energy and carbon returns, they argue

that there is reason to believe that volatilities of those commodities are also connected. In an

attempt to identify potential volatility spill-overs between carbon prices and prices for natural

gas and crude oil, they apply a multivariate volatility model. The results suggest that carbon

return volatility is directly affected by its own volatility and the volatility of crude oil and natural

gas.

Kanamura (2010) assesses the impact of financial market turmoil on carbon market correlation

with stock price indices. He applies a multivariate correlation model and detects an increase in

market correlation in times when stock markets plunge, known as contagion. Further, his results

suggest a reduction in correlation during the April 2006 oversupply event.

Although this work is closest to the present study, Kanamura (2010) does not make an attempt

to identify exogenous drivers of correlation. Further, to the knowledge of this study, there is no

other work so far that characterizes the process driving correlation between carbon and energy

prices. The present work would like close this gap in the literature by combining aspects of both

Chevallier et al. (2009) and Kanamura (2010) in order to build a multivariate correlation model

with explanatory variables.

4 Motivation

4.1 The Significance of Volatility and Co-Movements

Fuel-switching behaviour of power generation firms connects fuel and carbon prices15. Following

the example in section 2.1, a higher gas (coal) price can result in a higher (lower) carbon price,

which provides a theoretical basis for co-movement between the prices of input fuels and carbon.

This co-movement is measured as the covariance, or correlation, between the two prices. An

example shall be given in which correlation between fuel input and carbon prices plays a key role.

Variances and correlations of fuel inputs and carbon emission allowances are of great concern

to power generators (henceforth producers). A producer uses hydrocarbon fuels and carbon

emission allowances as inputs to the process of electricity generation and is therefore dependent

on these inputs. Unlike a portfolio manager, who can diversify her exposure to unfavourable price

movements by changing the asset composition of her portfolio, the producer is exposed to price

changes in power, energy and carbon markets. As a result, the risk-averse producer operates in

forward markets in order to hedge the risk of unfavourable price movements. This enables her

to lock in a given marginal cost of generation and profit.

The degree to which the producer will operate in such forward markets depends on her

expectation with regard to future prices. Two key variables come into play. The first variable is

the price volatility, which is commonly estimated as conditional variance. The higher the price

volatility for a particular asset, the higher the uncertainty about future prices and therefore the

15Simulation results by Ellerman and Feilhauser (2008) and Delarue and D’Haeseleer (2008) provide theoretical
support for this claim.
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risk associated with exposure to this asset. For example, high carbon emission allowance price

volatility, measured as high conditional variance, will lead the producer to operate more actively

in a futures market to lock in a given marginal cost.

The second variable of interest is the asset’s price co-movement with other relevant input

prices, measured as its conditional covariance or correlation. The importance of correlations

between power, gas and carbon prices is illustrated using the example of a CCGT power plant.

The producer generates revenue through the sale of electricity on a power market. Her costs are

given by the cost of natural gas and carbon emission allowances16. Assume that in period t, the

risk averse producer sells 50% of her month-ahead output forward on the month-ahead market in

order to protect herself against falling power prices. Further, the producer buys both the required

quantities of natural gas and carbon emission allowances on the month-ahead market to ensure

herself against price increases. This enables her to lock in an amount of profit p. In period t+ 1,

the month-ahead prices of electricity, gas and carbon emission allowances have changed and the

extent to which the strategy of selling 50% of output on the month-ahead market will lock in the

same amount of profit p depends on the correlation of all three prices. Strong positive correlation

of power and natural gas prices, as observed empirically, supports the notion that cash-flows of

CCGT plants are self-hedged, Roques et al. (2008). That is, an increase in the price of natural gas

is associated with an increase in the price for electricity, such that profits are protected. However,

if prices are not strongly correlated or correlation changes over time then profits will change as

a result of price movements. In particular, if carbon and gas prices decouple, a decrease in the

price of gas will not be associated with a decrease in the price of carbon emission allowances and

profits will decrease as a result.

In order to illustrate the producer’s exposure to fuel and carbon emission allowance price

movements, recall that the marginal generation cost (MCi) is defined as in equation (1). Given

the daily changes in fuel and carbon prices, MCi,t is time varying. Its variance is given by

σ2MCi
=

1

η2i
σ2FCi

+
EF 2

i

η2i
σ2EC + 2

1

ηi

EFi

ηi
ρFCi,ECσFCiσEC (3)

where ρFCi,EC is the correlation of fuel inputs and carbon allowances and σ2i are variances.

Equation (3) is a measure of risk associated with marginal generation cost. It is a function of the

variances as well as correlations of energy and carbon prices.

The present study will contribute to the literature in three ways. First, it will show that the

pairwise correlations between power, fuel and carbon are time-varying. Second, it will analyze

the effect of extreme weather, seasonal influences and commodity market volatility on those

correlations. Thirdly, it will identify periods in which the absence of an economic incentive to

switch input fuels leads to a decoupling of prices and a reduction in correlation. Section 4.2 will

explain the last contribution in more detail.

16Other costs, such as the cost of capital, are ignored for the sake of simplicity.
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4.2 Definition of Correlation Regimes

Previous research has focused on the determinants of carbon returns, while volatility and corre-

lation with other energy series has obtained relatively little attention, despite their significance

for both portfolio managers and power generators. The present section shall formulate the main

working hypothesis and make an approach to answering the following question: what determines

correlation of carbon emission allowances with other energy prices?

Changes in the relative price of input fuels, such as natural gas and coal, affect the optimal

merit order of power generation, which leads to a fuel-switch by the profit maximising power

generator. However, fuel-switching is not directly observable and must be inferred from changes

to relative marginal generation costs.

Given observed fuel price data and industry standards of typical emission factors and thermal

efficiencies of various generation technologies, such as natural gas and coal, one can construct

the theoretical switch price, ECt, as defined by Newbery (2005) and given in equation (2). On

comparison of this theoretical switch price to the empirical carbon prices, PEUA,t, inference on

the unobserved merit order can be made. A crucial assumption is that a profit maximising

producer will switch production from using coal to using natural gas as soon as the empirical

carbon emission price exceeds the theoretical switch price.

This assumption implies that unobserved fuel-switching behaviour by producers drives the

correlation between input fuels and carbon emission allowances. However, in case of a static

merit order, where marginal costs are significantly apart such that a change in the price of one

input fuel does not lead to a change in the merit order, there is no economic incentive to switch

between input fuels. As a result, the connection between fuel and carbon prices is broken. This

situation is associated with periods when the empirical carbon emission price is significantly

above or below the theoretical switch price. In contrast, fuel price changes may results in fuel-

switching behaviour and therefore subsequent changes in the price of carbon emission allowances

when marginal generation costs are sufficiently close to each other.

In practice, the calculation of the carbon switch price between competing technologies is dif-

ficult. Given the significant heterogeneity in the UK power plant portfolio, there is no single

switch price. That is, there exists a wide range of thermal efficiencies and corresponding emission

factors in the UK plant portfolio, such that a switch price will have to be calculated for each pos-

sible pair of generation technologies. The problem of heterogeneity is circumvented by looking at

available data on the distribution of existing plant characteristics in the UK portfolio. Maximum

and minimum values for thermal efficiencies and emission factors are used to define carbon price

ranges over which the choice of generation fuel is unchanged, hence merit order is constant.

In more detail, two theoretical switch prices are defined between which the empirical carbon

price is expected to move. The upper bound theoretical switch price, SPu, is defined as the carbon

price above which gas is the preferred technology, irrespective of the thermal characteristics of

12



the plant portfolio. It is derived as

SPu =
ηEcoal · FCgas − ηIgas · FCcoal

ηIgas · EFE
coal − ηEcoal · EF I

gas

(4)

where ηEcoal and EFE
coal are the respective thermal efficiency and emission factor of the most

efficient coal fired power plant in the UK plant portfolio. ηIgas and EF I
gas are the respective

thermal efficiency and emission factor of the most inefficient natural gas fired power plant in the

UK portfolio. An increasing carbon price will stimulate producers to switch input fuels from

hard coal to gas. Once the carbon price has reached SPu, even the producers with the choice

between the most inefficient gas and most efficient coal plant will have switched to natural gas.

That is, there exists no other technologically feasible plant portfolio which prefers coal over gas

generation. As a result, a higher share of gas production will decrease the demand for carbon

emission allowances and its price will start to level off.

Analogously, the lower bound theoretical switch price, SPl, is defined as the carbon price

below which coal is the preferred technology, irrespective of the thermal characteristics of the

plant portfolio. It is derived as

SPl =
ηIcoal · FCgas − ηEgas · FCcoal

ηEgas · EF I
coal − ηIcoal · EFE

gas

(5)

where ηIcoal and EF I
coal are the respective thermal efficiency and emission factor of the most

inefficient coal fired power plant in the UK plant portfolio. ηEgas and EFE
gas are the respective

thermal efficiency and emission factor of the most efficient natural gas fired power plant in the UK

portfolio. A decreasing carbon price will stimulate producers to switch input fuels from natural

gas to hard coal generation. Once the carbon price has reached SPl, even the producers with the

choice between the most inefficient coal and most efficient natural gas plant will have switched

to hard coal. That is, there exists no other technologically feasible plant portfolio which prefers

gas over coal. As a result, a higher share of coal production will increase the demand for carbon

emission allowances and its price will start to increase again.

Taken together, the empirically observed price of carbon emission allowances is expected to

move between the two time-varying bounds SPl and SPu. Given the definition of the theoretical

carbon switch prices, two correlation regimes are defined. The first regimes refers to a static

merit order, in which the empirical carbon price either exceeds SPu or falls below SPl. In this

case, either natural gas or coal are clearly preferred technologies and small changes in fuel prices

will not change merit order. In this case there is no economic incentive to switch input fuels.

Demand for emission allowances remains unchanged and fuel and carbon prices are decoupled.

The second regime corresponds to periods during which the empirical carbon price is strictly

between the two bounds17. In this case, merit order is mixed, that is generation technologies

17Note, given ηEfuel(i) > ηIfuel(i) and EF I
fuel(i) > EFE

fuel(i), it follows that SPu > SPl.
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are not clearly ranked in the merit order and the trade-off between two competing technologies

depends on their thermal characteristics. In this regime, merit order is affected by small fuel

price changes. The resulting fuel-switch affects demand for carbon emission allowances. Hence,

fuel and carbon prices are coupled. Formally, define

ιt (PEUA,t, SPl,t, SPu,t) = 1t (SPl,t < PEUA,t < SPu,t) (6)

where PEUA,t is the price of a carbon allowance at time t, 1t is the indicator function . ιt(.) in

equation (6) is equal to one in the mixed merit order regime, that is when prices are coupled.

The dummy variable will be used in the estimation of the correlation matrix of carbon emission

allowances, input fuels and electricity prices. It will help identify whether extreme relative prices

of those variables affect their dynamic correlation structure. The main hypothesis to be tested is

H0 : |corrt(fuel, EUA|ιt = 1)| = |corrt(fuel, EUA|ιt = 0)| (7)

against the alternative

H1 : |corrt(fuel, EUA|ιt = 1)| > |corrt(fuel, EUA|ιt = 0)| (8)

In the mixed merit order regime (ιt = 1), an increase in the price of natural gas, say, will results in

an economic incentive for some producers to switch generation to hard coal and therefore increase

their demand for emission allowances. All else equal, this will increase their price. Hence, the

direction of the inequality in the alternative hypothesis.

From the perspective of a CCGT plant operator, the results of evaluating the null hypothesis

in equation (7) contain vital information. If in period t, relative forward fuel and carbon prices

are such that merit order is constant, then prices are decoupled and their correlation is reduced.

This requires a different hedging strategy in order to lock in a given profit one month ahead,

when compared to coupled prices and high correlation.

5 Carbon and Energy Market Data

This section will describe the main data series used in estimation and testing of the previously

stated hypothesis. The sample period covers April 22, 2005 until August 4, 2010. Taken together,

this makes for a total of 1.360 daily observations. The data is obtained from the European Climate

Exchange (London) and Bloomberg.

5.1 Data Specifications

5.1.1 European Emission Allowances

European Emission Allowances are traded either bilaterally over-the-counter or on public ex-

changes, where the most active futures exchange is the European Climate Exchange (ECX).
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There are three carbon price series used in this study, daily settlement prices of future contracts

with delivery in December 2007, 2009 and 2010 respectively. They are all traded on the ECX

in e/ton of CO2 and are plotted in figure 2. The December 2007 contract has a perishable

underlying spot commodity, caused by the inter-phase banking restriction. Its price tends to

zero as time approaches maturity. The prices of both contracts with delivery in phase II remain

positive, where the slight difference in price between the two is justified by the difference in time

to maturity.

The construction of a reference price for EUAs needs to take the banking restriction into

account, as EUAs need to be delivered at the end of each year according to the level of verified

annual emissions. This is achieved by combining the three contracts into one single EUA future

price series, labelled EUA Tracker. During phase I, EUA Tracker is equal to the price of the

December 2007 contract. In phase II, EUA Tracker switches to the December 2009 contract,

until its date of maturity, after which it switches to the December 2010 contract. The newly

created variable is plotted in figure 3. Although many studies employ the entire lifespan of the

December 2009 contract for econometric estimation, here the December 2007 contract will be used

for phase I prices, as this price bears immediate relevance to the power generation industry18.

There are two periods in the sample which require highlighting. The first event refers to

April 2006, during which the announcement of an oversupply of emission allowances sent their

price plummeting from over 30 e/tCO2 to just under 10 e/tCO2 within a few days. This period

is regarded by the literature as a structural break, introducing high exogenous volatility into

the data, Alberola et al. (2008). The second event refers to the end of 2007, during which the

December 2007 contract, and therefore the newly created tracker variable, fell and remained

below 0.10 e/tCO2. Given the low price level and the minimum size of a price change, this

introduces high volatility.
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Figure 2: EUA Futures Contracts - Source: ECX

18See e.g. Chevallier et al. (2009) and Mansanet-Bataller and Soriano (2009).
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Figure 3: EUA Futures Contract Tracker

5.1.2 Energy Markets

Previous literature underlines the significance of energy prices as the main determinants of the

carbon price. Section 2.2 discussed the suitability of the UK for the present analysis, which

motivates the use of energy price data relevant to the UK power market. In particular, the

prices of natural gas, crude oil and coal are taken as the three main fossil and carbon intensive

energy sources. The price of natural gas is the daily Intercontinental Exchange (ICE) Natural

Gas 1-month forward contract for the National Balancing Point (NBP) in the UK, traded in

GB pence/therm. The coal price is the daily 1-month forward price of CIF ARA19 coal futures,

traded in USD/ton. The oil price used is the daily price of the ICE Brent 1-month ahead contract

traded in USD/barrel. All three energy price series are plotted in figure 4, converted into Euro

per GJ of energy content.

The crude oil price is included in the estimation in order to control for contemporaneous

correlation with all other energy sources. This is this study does not take into account the

lagged relationship between crude oil and natural gas, as a result of the oil-indexation of pipeline

gas contracts on the European continent. Rather, it controls for the effect current oil market

movements have on the current correlations between between natural gas, carbon and power

prices.

As becomes immediately obvious from figure 4, the coal price is less volatility than both prices

for Brent and natural gas. With exception of the period between November 2007 until November

2008, the coal price moves rather closely along 2 e/GJ. Much more volatile over the entire sample

period, the oil price reached its maximum of 15.10 e/GJ in July 2008, before a sharp decline to

around 7 e/GJ. The price of natural gas, however, reached its peak of 16.10 e/GJ in November

2005.

19CIF ARA coal is inclusive (Cost, Insurance and Freight) and delivery to large North European ports such as
Amsterdam, Rotterdam and Antwerp.
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The electricity price used in this study is the 1-month forward (OTC) price for baseload power

in Great Britain. The contract prices are provided by GFI Group Ltd.,traded in GBP/MWh and

plotted in figure 4. The aim of this study is to estimate correlations from the perspective of a

CCGT plant operator. Following Wright (2006), CCGT generation is the main source of British

baseload power, which justifies the use of baseload as opposed to peakload power prices.

The final variable in the dataset is the Standard & Poor’s Goldman Sachs Non-Energy Com-

modity Index (SPCI) as obtained from Bloomberg. The movers of this commodity index, which

is traded daily in USD, can be categorized into industrials, livestock, precious metals and agri-

culture20. Following Chevallier et al. (2009), the index volatility, computed as the rolling window

standard deviation, will be used as an exogenous variable to control for global commodity market

volatility. The reason for doing so is the potential correlation of one or more of the series under

consideration with the SPCI movers, which introduces a bias into the correlation parameter esti-

mation. A non-energy commodity index is used, as opposed to an index covering all commodity

classes, in order to avoid problems arising from multicollinearity of right-hand-side variables.

5.1.3 Weather Controls

Mansanet-Bataller et al. (2007) documented the significant effect of weather variables on carbon

prices. Weather plays a key role also in the present analysis through its effect on the electricity

market. Three key weather variables are taken into account, namely air temperature, wind speed

and precipitation.

Air temperature affects energy and carbon markets mainly through its effect on electricity

consumption. Extremely hot (cold) days drive up electricity demand through increased cooling

(heating) efforts, increasing the load in the power system21. This results in reduced possibilities to

trade-off generation technologies in the plant portfolio, which then potentially affects correlation

patterns of energy and carbon prices. Therefore, in line with Mansanet-Bataller et al. (2007),

extremely hot and cold days are identified and used in form of an indicator variable in the

estimation of energy and carbon price correlation.

While air temperature affects electricity demand, wind speed and precipitation affect supply.

Wind speed and precipitation influence the availability of wind and hydro generation respectively,

which accounts for approximately 7% of the total UK fuel mix22. Availability of renewable

(emission free) generation influences its position in the merit order and therefore total annual

demand for carbon emission allowances. Extremely dry (rainy) and windy (non-windy) days are

identified and used together with the air temperature indicator to control for the effect of weather

on energy and carbon market correlation.

Applying the methodology of Mansanet-Bataller et al. (2007), population-weighted weather

20The index movers are 18 non-energy commodities. Industrials: nickel, zinc, aluminium, copper, lead. Livestock:
lean hogs, feed cattle, live cattle. Precious Metals: silver, gold. Agriculture: wheat, corn, coffee, soybeans, Kansas
wheat, cotton, sugar, cacao.

21For the effects of weather on electricity demand see Hor et al. (2005).
22See Renewables in figure 1.
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Figure 4: Energy, Power and SPCI Data - Source: Bloomberg

indices are constructed using data from weather stations of the 30 most densely populated areas

in the UK. All weather data is obtained from Bloomberg and population data is sources from

the UK Census 2001, NationalStatistics (2001). Following these indices, a day is classified as

extremely cold (hot), dry (rainy) and non-windy (windy), if all the daily observations of up to a

maximum of four consecutive previous days are in the first (fifth) quintile. Table 1 outlines how

many observations qualify in each of these categories.
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Table 1: Extreme Weather Indicators

Weather Count Extr. Low Count Extr. High Count Total

Temperature 112 115 227

Wind Speed 15 19 34

Precipitation 26 7 33

Extreme Low (High) = 4 previous consecutive daily observations

in first (fifth) quintile.

5.2 Preliminary Statistics

Visual inspection of the the data plotted in figures 3 to 4 suggests non-stationarity, that is the

data appears to be integrated of order one, I(1). In order to avoid problems arising from non-

stationarity, this study follows previous work by Chevallier (2009) and uses daily logarithmic

returns. They are defined as

ri,t = log

(
pi,t
pi,t−1

)
(9)

where pi,t is the price of series i in period t, which is taken to be one trading day. The rest of this

paper will exclusively work with daily logarithmic returns of power, energy and carbon prices,

that is the econometric methodology will analyze the relationship between daily price changes

rather than prices themselves. Emission allowance (EUA) returns are plotted in figure 5 and

all remaining returns in figure 6. Again, two periods are highlighted in the EUA return series.

The April 2006 compliance event introduced high levels of exogenous return volatility. Following

Doornik and Ooms (2005), there are two ways to deal with such outliers. First, one can assume

a fat tailed distribution of the return data, assigning higher probability mass to the tails of the

distribution. Second, one can consider the volatility to be the result of an exogenous process. In

this case, one can remove it by introducing an event dummy variable in the volatility modelling.

The present analysis will adopt the latter, and introduce a dummy variable equal to one from

Aril 25, 2006 until June 23, 2006, Alberola et al. (2008). Further, figure 5 highlights the low price

period during the end of 2007, which will not be regarded as exogenous23.

Special attention needs to be given to December 18, 2007. On this date the EUA tracker

switches from the December 2007 to the December 2009 contract, which results in a significant

price jump from nearly zero to 23.14 e/tCO2 and therefore an abnormally high return. This

jump is constructed by definition of the EUA tracker variable. No such jump is observed in any

of the other returns series, which means that correlation between the emission allowance price and

all other series in the model is reduced. In order to avoid introducing a bias into the estimated

correlation parameters, the abnormally high return will have to be removed. This observation is

23During this period the price of an EUA fell below 0.10 e/tCO2, generating abnormally high returns, as the
minimum price change is 0.01 e/tCO2
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therefore treated as an exogenous outlier and is not included in the estimation.

Visual inspection of the return series leads to the conclusion that all series show evidence

of volatility clustering, a form of autoregressive heteroskedasticity or ARCH effects24. A formal

test-statistic for ARCH effects as well as descriptive statistics can be found in table 2.

Figure 5: Returns EUA Contract Tracker

All return series have a mean close to zero. EUA returns are most volatile, closely followed by

the natural gas and electricity. As shown in figure 4, the coal price return is the least volatile out

of the energy data. In order to avoid spurious results in the subsequent econometric analysis of

the data, one has to take account of non-stationarity. In order to detect a unit root in any of the

five return series, Augmented-Dickey-Fuller and Phillips-Perron unit root tests are performed.

Results are shown in table 2. Both test statistics by far exceed their critical value for the 1%

significance level. Hence, one can reject the null-hypothesis of a unit root for all series, and the

returns in figures 5 and 6 are all taken to be stationary.

The Ljung-Box statistic for autocorrelation indicates that one can reject the null-hypothesis

of no autocorrelation for carbon, coal and oil returns, as well as for electricity. The strongest

autocorrelation is in the EUA return series, whereas the commodity index and natural gas returns

show no signs of statistically significant autocorrelation.

24ARCH stands forAutoregressive Conditional Heteroskedasticity and goes back to the work of Engle (1982)

20



Table 2: Daily Return Summary

Return Series EUA Ngas Coal Oil Electr. SPCI

Observations 1358 1358 1358 1358 1358 1358

Mean -0.00583 0.00026 0.00027 0.00031 0.00025 0.00039

Median 0.00000 -0.00262 0.00000 0.00081 0.00000 0.00034

Maximum 1.09861 0.47770 0.16102 0.12707 0.27863 0.05867

Minimum -1.38629 -0.26277 -0.20315 -0.10946 -0.21755 -0.05808

Std. Dev. 0.07785 0.04816 0.01567 0.02388 0.03099 0.01174

Skewness -4.33189 2.60951 -0.43211 -0.09204 1.36190 -0.38568

Kurtosis 138.19000 21.30837 38.66085 5.99681 17.86345 5.31196

JB (p-value) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ADF -8.86161 -34.87257 -30.46586 -39.38229 -25.52909 -37.89189

PP -40.43669 -34.84420 -31.14330 -39.39300 -30.85052 -37.88619

Q(20) 142.99 29.15 99.10 50.20 83.43 25.87

Q2(20) 477.37 4.40 13.40 1785.10 126.48 637.43

ARCH-LM(5) 226.95 2.05 8.13 286.35 17.17 165.31

Q(20) and Q2(20) are Ljung-Box statistics for testing autocorrelation in return and squared

return series respectively for the first 20 lags. The 5% critical values of χ2(5) and χ2(20)

distributions are 11.07 and 31.41 respectively. The 1% critical values of the ADF/PP test

statistic is -3.44.

This study assumes the perspective of a CCGT plant operator and therefore puts special

attention to natural gas and emission allowance returns. There are two remarkable differences

between the two return series. First, the autocorrelation of the EUA returns is the strongest

in the sample, whereas natural gas returns are not serially correlated. Second, the volatility of

the EUA series is significantly higher than that of natural gas. These differences may largely be

explained short-run storage costs. Given the removal of the inter-phase banking restriction, emis-

sion allowances are durable. They are storable only at the cost of interest. Energy commodities,

such as natural gas, have additional storage costs resulting in higher costs of carry. In their work

on the theory of storage, Williams and Wright (1991) argue that there is an inverse relationship

between the autocorrelation of the month-ahead future price of a commodity and its storage costs.

Since short-run storage costs of emission allowances are much lower when compared to those of

natural gas, the difference in the level of autocorrelation is in-line with theoretical prediction25.

The second difference, namely that in volatility, is not so straightforwardly explained. Take

the relationship between spot and forward (futures) prices of a commodity. According to Hull

(2008), the no-arbitrage condition ensures that

25A detailed analysis of the link between storage costs and commodity prices is beyond the scope of this study
and can be found in Williams and Wright (1991).
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Ft − wt,T = Ste
(rt,T−ct,T )(T−t) (10)

where Ft is the forward price at time t for delivery at time T > t. St is the spot price of the

commodity at time t. wt,T is the cost of storing the commodity from time t to T and rt,T is the

risk-free interest rate over the holding period. The convenience yield is given by ct,T
26. From

this, the annual adjusted spread (zt) can be defined as

zt ≡
ln(Ft − wt,T )− lnSt

T − t
− rt,T = −ct,T ≤ 0 (11)

This spread equals the annual percentage difference between the forward and spot prices at time

t, adjusted for storage and interest costs over the holding period. Williams and Wright (1991)

argue that there is an inverse relationship between the adjusted spread zt and the volatility of

spot and futures returns. In particular, if storage costs are low, such in the case of emission

allowances, zt is high and the spread is narrow, which results in low volatility. However, emission

allowance futures return volatility exceeds that of natural gas, despite lower short-run storage

costs. This contradicts the theoretical prediction. The answer to this problem lies in the outliers

in the EUA return series. The April 2006 compliance event as well as the jump in December

2007 introduced exogenous volatility. Once these outliers are removed, the volatility of emission

allowance returns is below that of natural gas returns and the difference is in-line with theoretical

prediction.

Another aspect to be examined is the presence of heteroskedasticity, or ARCH effects. An

informal test for ARCH effects in the data is the Ljung-Box statistic for autocorrelation in squared

returns. Here, the results of the visual inspection are confirmed for carbon, oil, electricity and

SPCI returns. ARCH effects are identified using the ARCH-Lagrangean Multiplier (ARCH-LM)

test. In the ARCH-LM test, squared residuals from modelling the first moment are regressed (via

OLS) on a constant and on their own lagged values. The lag-length is set to five. The ARCH-LM

test statistic is T · R2 where R2 is the coefficient of determination of the aforementioned least

square regression, T is the sample size. Under the null hypothesis of no ARCH-effects, the test

statistic has a standard asymptotic χ2-distribution with five degrees of freedom. Again, results

are displayed in Table 2. The ARCH-LM test statistic is significantly higher than its critical value

for the 5% level only in the case of carbon, oil, electricity and SPCI returns. Therefore, there are

statistically significant ARCH effects in those series. Natual gas and coal returns, however, show

no formal sign of ARCH effects.

As observed in many financial return series, carbon and energy returns are likely to be non-

Gaussian, Mills and Markellos (2008). As displayed in Table 2, there is non-zero skewness in

all return series, which is evidence of a non-symmetric distribution. Further, there is significant

26The benefit of holding the physical asset as opposed to a futures contract is referred to as convenience yield,
Hull (2008).

22



excess kurtosis (> 3) in the returns, that is the tails of the distribution contain more probability

than a Gaussian. Taken together, the return series are said to be leptokurtic. Formally, this

study test all return series for normality applying the Jarque-Bera (JB) test statistic. The

JB tests a joint hypothesis of skewness and excess kurtosis being zero. Again, the results are

displayed in Table 2. The p-value for the JB statistic is zero in all six cases. Hence, the null

hypothesis of normality can safely be rejected in favour of the alternative hypothesis, a non-

Gaussian distribution.
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Figure 6: Energy, Electricity and Non-Energy Commodity Index Returns

5.3 Calibration of Correlation Regimes

Section 4.2 introduced both upper and lower switch bounds for the estimation of correlation

regimes between carbon emission allowances and energy prices. Both prices include thermal

efficiencies and emission factors which need to be calibrated to the UK plant portfolio. Calibration

values are obtained from Delarue and D’Haeseleer (2008) and DECC (2010), and are exhibited

in table 3.

Resulting upper and lower switch bounds, based on above figures and energy and carbon price

data are plotted together with the empirical carbon emission allowance price in figure 7. Periods

during which the empirically price is above (below) the upper (lower) bound correspond to a

decoupling of carbon and energy prices. During those periods, fuel choices of power generators

are set fixed in natural gas (hard coal). The correlation between carbon emission allowance and

natural gas (hard coal) prices is reduced, as no fuel-switching is taking place. Periods during

which the EUA price strictly in between the two switch bounds are characterized as mixed

merit. During mixed merit periods, prices of carbon emission allowances and generation fuels are
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coupled, as fuel-switching takes places and links price movements.

Based on these upper and lower switch bounds is the calculation of the merit order regime

dummy, as given in equation (6), which is equal to one in the mixed merit order regime. Given

the data, there are 877 observations in the mixed merit order regime in which prices are taken

to be coupled. 481 observations are in the static merit order regime in which prices are taken to

be decoupled, of which 204 correspond to a static gas and 277 to a static coal regime. Figure 7

plots the temporal distribution of all three merit order regimes. In order to provide a rigorous

framework for testing the effect of static and mixed merit order on correlation, the dummy for

mixed merit order is used in an econometric specification for the conditional correlation matrix

of all energy, carbon and electricity returns. Details about the exact specification will be outlined

in the next section.

Table 3: Thermal Power Plant Characteristics

Efficient Plant Inefficient Plant

Natural Gas

η 0.50 0.40

EF 117 163

Hard Coal

η 0.38 0.34

EF 240 280

EF Emission Factor in kg/GJ, η Net Thermal Efficiency in GJe/GJ

Source: Delarue and D’Haeseleer (2008); DECC (2010)
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6 Econometric Methods

This section will describe in detail the econometric approach taken in order to identify the exis-

tence of correlation regimes. Before imposing a parametric structure on the correlation matrix

of carbon, electricity and energy returns, a suitable model for the mean has to be determined.

This will be achieved in section 6.1. The residuals from the mean estimation will subsequently

be used to fit a multivariate correlation model. The basic model will be described in detail in

section 6.2.1. A generalization of the basic model, as well as the introduction of the merit order

regime dummy and other control variables, can be found in sections A.1 and A.2 of the appendix

respectively.

6.1 Estimation of the Mean

The purpose of the model for the first moment is to capture any serial correlation present in the

return data. Table 2 provides the Ljung-Box test statistics for serial correlation. The statistics

show evidence of significant serial correlation in the return data up to a lag length of 20 trading

days. Hence, the first moment is modelled as a Vector Autoregression (VAR) of lag order p. Let

rt denote an k × 1 vector of returns at time t, it is defined as rt = {ri,t}, where ri,t is the daily

logarithmic return, for i = 1...k, as found in equation (9). In vector notation, the VAR(p) model

is then described as

rt = η0 +

p∑
j=1

Λjrt−j + εt (12)

where η0 is a k×1 vector of constants, Λj is a k×k matrix of coefficients and εt is a k×1 vector

of residuals. The lag length p of the VAR(p) is determined by minimizing the Akaike Information

Criterion (AIC), testing down from p = 20. The model specification will be confirmed by checking

the residuals in equation (12) for any remaining serial correlation.

6.2 Estimation of the Conditional Variance-Covariance Matrix

A correctly specified model for the first moment will produce serially uncorrelated residuals.

However, as it is frequently the case for financial market returns, the variance of the residuals

will remain time-varying, that is the returns remain heteroskedastic. Time-varying variance and

excess kurtosis in the data motivates the use of a GARCH-type estimation framework27. GARCH

models incorporate the heteroskedasticity of the returns into the estimation procedure and have

been applied to carbon and energy market data by Benz and Trueck (2009), Chevallier et al.

(2009) and Mansanet-Bataller and Soriano (2009).

The basic univariate GARCH model is defined as follows. Assume that the mean of a return

27GARCH stands for Generalized Autoregressive Conditional Heteroskedasticity and is the result of seminal work
by Engle (1982) and Bollerslev (1986).
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series follows an AR(p) process with drift term α0.

ri,t = α0 +

p∑
j=1

αjri,t−j + εi,t (13)

where ri,t is a daily logarithmic return of series for i = 1...k and εi,t is a residual. Defining Ωt−1

as the set of available information about the process up until and including observation t−1, one

obtains that εi,t|Ωt−1 ∼ N(0, σ2i,t), where σ2i,t is the conditional variance of εi,t. It follows that

εi,t = σi,tηt , where ηt ∼ NID(0, 1) (14)

The residual εi,t is fitted to a generalized autoregressive conditional heteroskedastic process, its

conditional variance is then described as

σ2i,t = β0 +

p∑
j=1

βjσ
2
i,t−j +

q∑
j=1

δjε
2
i,t−i (15)

Equations (13) to (15) complete the specification of the GARCH(q, p) model.

6.2.1 The Dynamic Conditional Correlation Model

A natural extension of the univariate analysis is the multivariate GARCH(q, p) model. In ad-

dition to conditional variances, a multivariate specification also allows for the estimation of

time-varying correlations. The mean of the 5 × 1 vector of carbon emission allowance, natu-

ral gas, hard coal, crude oil and electricity returns is modelled as a VAR(p), defined in equation

(12) with k = 5, which produces a vector of serially uncorrelated, yet heteroskedastic residuals

εt = (εeua,t εgas,t εcoal,t εoil,t εelec,t)
′.

Given the assumption of a conditional multivariate normal distribution as the underlying

return distribution, it follows that εt|Ωt−1 ∼ N(0, Ht), where Ht is an k× k conditional variance

covariance matrix and 0 is a k × 1 mean vector of zeros. Ωt−1 is the information set about the

series up to and including period t − 1. The residual vector εt is conditionally heteroskedastic,

that is εt = H
1/2
t ηt, where ηt is an iid error process, such that ηt ∼ N(0, I).

There are various specifications for the conditional covariance matrix Ht. Among the most

commonly used are the original VECH-model by Bollerslev et al. (1988), the Constant Condi-

tional Correlation (CCC) model by Bollerslev (1990) and the BEKK-model by Engle and Kroner

(1995)28.

Mansanet et al. (2009) use a trivariate version of the unrestricted BEKK in order to model

volatility dynamics and covariances between carbon emission allowances, natural gas and crude

oil returns. The BEKK(1, 1) specification of the k × k conditional covariance matrix of Ht is

28For comprehensive surveys on multivariate GARCH models see Bauwens et al. (2003) and Silvennoinen and
Tersvirta (2007).
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given by

Ht = C ′C +A′εt−1εt−1
′A+B′Ht−1B

where C = {cij} is an k × k lower-triangular matrix of constants, A = {aij} and B = {bij} for

i, j = 1...k, are k×k matrices of (G)ARCH parameters. Estimates for the conditional correlation

are then obtained as a function of the individual elements in Ĥt. While this methodology has

been frequently used in modelling conditional covariances among asset returns, it suffers from

a problem of high dimensionality. The number of parameters increases polynomially with the

number of series k. A BEKK(p, q) model requires the estimation of (p + q)k2 + k(k + 1)/2

parameters.

This study will therefore apply the rather parsimonious Dynamic Conditional Correlation

(DCC) methodology based on Engle (2000) and Engle and Sheppard (2001). Essentially, the

DCC specification is an extension of the CCC-model, allowing for the estimation of time-varying

conditional correlations in a two-stage process. In stage one, univariate GARCH models on

the individual return series produce standardized residuals, which are then used in the second

stage to estimate the correlation process. A comprehensive discussion about the significance and

estimation of time-varying correlations within the DCC framework can be found in Engle (2009).

Following the DCC model of Engle and Sheppard (2001), the conditional covariance matrix

is re-written as

Ht = DtRtDt

where Dt is the k × k diagonal matrix of time-varying standard deviations with
√
σ2i,t on the

ith diagonal, obtained from modelling each residual series as a univariate GARCH process, such

as the one in equation (15). Rt is the time-varying conditional correlation matrix. Given the

assumption of conditional normality29, the log-likelihood can then be written as

L(θ) = −1

2

T∑
t=1

(m log(2π) + log(|Ht|) + ε′tH
−1
t εt)

= −1

2

T∑
t=1

(m log(2π) + log(|DtRtDt|) + ε′tD
−1
t R−1t D−1t εt)

= −1

2

T∑
t=1

(m log(2π) + 2log(|Dt|) + log(|Rt|) + ξ′tR
−1
t ξt) (16)

where θ is a vector of parameters and ξt ∼ N(0, Rt) are the residuals standardized by their

conditional standard deviations in Dt, such that ξt = D−1t εt. Engle and Sheppard (2001) propose

29If the true conditional distribution of the residual vector εt is not normal, equation (16) is the quasi-likelihood
function. Its purpose is purely for estimation, which yields the asymptotically normal and consistent Quasi-
Maximum Likelihood (QML) estimator. These qualities justify the widespread use of QML despite known non-
Gaussian return distributions.
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the following dynamic correlation structure:

Qt = (1−
P∑

j=1

αj −
Q∑

j=1

βj)Q̄+
P∑

j=1

αj(ξt−jξ
′
t−j) +

Q∑
j=1

βjQt−j (17)

where Q̄ is the k× k unconditional covariance matrix of the standardized residuals from the first

stage. αj measures the extent to which standardized innovations affect the correlation process.

βj is a decay parameter30. P and Q are the respective lag-lengths of the innovation and decay

parameter and can be set independently. The dynamic conditional correlation is then given as

Rt = Q∗−1t QtQ
∗−1
t (18)

where Q∗t is a k× k diagonal matrix composed of the square root of the diagonal elements of Qt.

Rt is the conditional correlation matrix of the residuals resulting from the VAR(p) estimation

of the first moment. Further, Rt is the conditional covariance matrix of these residuals, once

standardized by their conditional variances. A typical element of Rt is of the form

ρij,t =
qij,t√
qii,tqjj,t

In the context of the present estimation i, j = carbon, gas, coal, oil, elec, therefore the resulting

conditional correlation matrix is given by

Rt =


1 ρeua,gas,t ρeua,coal,t ρeua,oil,t ρeua,elec,t

ρgas,eua,t 1 ρgas,coal,t ρgas,oil,t ρgas,elec,t

ρcoal,eua,t ρcoal,gas,t 1 ρcoal,oil,t ρcoal,elec,t

ρoil,eua,t ρoil,gas,t ρoil,coal,t 1 ρoil,elec,t

ρelec,eua,t ρelec,gas,t ρelec,coal,t ρelec,oil,t 1

 (19)

The econometric methodology will proceed in multiple stages. The first stage estimates a regular

DCC model, which then serves as base case. The correlation process in stage one follows directly

from Engle and Sheppard (2001) and, setting P = Q = 1, is given as

Model 1 Qt = (1− α− β)Q̄+ α(ξt−1ξ
′
t−1) + β Qt−1 (20)

where the individual elements are as defined before. A typical element of the correlation matrix in

equation (19), is the conditional correlation of carbon emission allowance and natural gas returns,

given as

ρeua,gas,t =
qeua,gas,t√
qeua,tqgas,t

(21)

30If all αj and βj are set to zero, one obtains the CCC model of Bollerslev (1990).
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Given the specification in Model 1, the nominator of equation (21) is estimated as

qeua,gas,t = (1− α− β)q̄eua,gas + α(ξeua,t−1ξgas,t−1) + β qeua,gas,t−1 (22)

whereas the denominator is is composed of

qeua,t = (1− α− β)q̄eua + α(ξ2eua,t−1) + β qeua,t−1 (23)

qgas,t = (1− α− β)q̄gas + α(ξ2gas,t−1) + β qgas,t−1 (24)

Model 1 will serve as a valid starting point, however imposes significant restrictions. The parsi-

mony of the DCC specification is based on the assumption that all asset correlations follow the

same ARMA-type structure31, that is they are all guided by the same α and β. While this might

be a valid assumption when modelling similar assets within the same asset class, the current study

requires more flexility. It is a reasonable assumption that power, energy and carbon markets ex-

hibit asset specific correlation sensitivities and therefore a generalized estimation procedure for

the conditional correlation matrix is required. Section A.1 discusses the generalization of the

DCC model as well as the presence of asymmetries in the correlation process. Finally, section

A.2 introduces control variables into the estimation.

7 Estimation Results

This section shall present the estimation results of the empirical methodology. First, the results

of the V AR(p) mean estimation are described in section 7.1. Second, section 7.2 discusses the

outcome of the DCC estimation for Model 1-4.

7.1 Results for the Mean Estimation

The correct specification of the model for the first moment of the return vector is the first step

in the estimation process. Previous analysis indicated significant autocorrelation in the return

data, suggesting a V AR(p). Several lag length (p) selection criteria are used to compare the

performance of various lag order specifications while introducing a penalty for additional right

hand side variables. Since the data is expressed in daily logarithmic returns, a lag order of p = 1

is a lag of one trading day. As expected, the log-likelihood increases with the order of p. Both the

final prediction error as well as the Akaike Information Criterion suggest a second order V AR,

while the Schwarz Information Criterion suggests the optimal lag-order of p = 0. Despite the

lag-length selection criteria suggesting p = 2 days, only a V AR(3) produces serially uncorrelated

residuals, which can be attributed to high order autocorrelation in both hard coal and electricity

returns.

31≈ ARMA(P,Q).
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The estimation results for the first moment reflect the significant autocorrelation patterns in

the data32. The highest order of autocorrelation can be observed in electricity returns, which is

significant at all three lags. As expected, there is a dynamic connection between the electricity

return and the returns of natural gas and hard coal. The electricity return in period t is positively

associated with the next period (t+ 1) return of hard coal and, to a larger extent, that of natural

gas. Further, there exists a feedback loop from natural gas on the electricity return, which again

is positive. The existence of a positive feedback loop reflects the important role of natural gas in

the UK electricity market as the major fuel input for power generation and confirms the notion

that investments in gas-fired generation plants are self-hedged33.

A correctly specified V AR(p) produces serially uncorrelated residuals. The results of an

LM test for serial correlation suggest that the V AR(3) is correctly specified and the produced

residuals are free from remaining serial correlation.

7.2 Results for the Variance and Covariance Specifications

The saved residuals from the previous step are now subject to a test for time-varying correlation.

Engle and Sheppard (2001) propose a test for dynamic conditional correlation based on an aux-

iliary VAR estimation. Applying the test to the current set of residuals, the null-hypothesis of

constant correlation can be rejected in favour of an alternative dynamic correlation structure34.

The first estimation step of the DCC estimation framework is to fit a GARCH(p, q) for each

of the return series in the model. Optimal lag orders p and q have been identified using the AIC.

Results are given in table 4 in the appendix. The basic GARCH(1, 1) provided optimal fit for

all series, except carbon returns, which require a q = 5 to capture higher order autocorrelation

in conditional variance.

In the second step, conditional variances from the GARCH(1, q) estimations are used to

standardize the residuals. Based on the standardized residuals, the DCC model (Model 1) as

well as various generalizations (Model 2-3) and extensions (Model 4) are estimated. Table 5 in

the appendix exhibits detailed results for all four model specifications. Resulting conditional

correlations for some of the return pairs are plotted in figure 8.

Columns one to three of table 5 provide the estimates for the DCC, the G-DCC and the

AG-DCC respectively. The benchmark DCC results do not allow for any heterogeneity in the

correlation process across the five return series as all conditional correlations are governed by the

same α and β. The results show a high decay parameter (β) and a relatively low sensitivity of the

correlation process to residual innovations (α), that is the correlation process between all return

pairs is rather smooth. The left-hand column of figure 8 plots the resulting conditional correlation

of Model 1 against a rolling window unconditional correlation estimate, using a window length

of 20 trading days. Given the short window length of the rolling window (RW) correlations and

32The estimation results for the V AR(3) as well as results for lag length selection and tests for remaining serial
correlation are omitted due to space constraints. They are available upon request.

33See Roques et al. (2008).
34Test results are available upon request.
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the high decay parameter (β) in the DCC, the RW correlations show in general a much higher

variance.
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Figure 8: Estimated Conditional Correlations

The large share of natural gas in the total UK generation fuel mix and the focus on CCGT

generators brings the key attention to three pairwise correlations, namely those of natural gas,

emission allowance and electricity returns. As previously mentioned, the degree of correlation

amongst those three return series affects the extent to which the cash-flows of a CCGT plant are

self-hedged. In particular, sustained high and positive correlations of month-ahead natural gas and

emission allowances with electricity returns means a positive correlation of month-ahead marginal

cost and revenue and hence hedged profits. This is the case, as baseload producers buy fuel

and sell output forward. However, the results of the DCC estimation illustrate that conditional

correlation of month-ahead natural gas and electricity returns are time-varying. While the rolling
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window correlations (RW) for gas and electricity returns show violent movements, ranging from

just under one to below zero, the DCC estimate are smoother and appear to oscillate around

0.5. This means that although correlations are time-varying, under the DCC methodology, the

self-hedging property of CCGT cash-flows appears less volatile. Further, the DCC correlations

between EUA and natural gas returns moves between 0.05 and 0.3. At a higher average level is

the correlation between EUA and electricity returns, moving between zero and 0.4.

As described in Engle (2009), the generalization of the DCC framework to return specific sensi-

tivity (decay) parameters (Model 2) and asymmetries (Model 3) changes the shape of conditional

correlation significantly. In general, the sensitivity of the correlation processes to standardized

innovations increases sharply, while the decay parameter decreases. This is illustrated by the

right-hand column of figure 8. In Model 3, statistically significant asymmetric innovation sensi-

tivities can only be detected for hard coal and crude oil returns. In both cases, the sensitivity of

the correlation process to negative innovations is higher as compared to positive ones.

Finally, Model 4 introduces control variables in the AG-DCC framework. Columns 4-6 of

table 5 (Appendix) exhibit the estimation results for a subset of control variable combinations,

whereby the focus lies on the control parameters in the last three rows. Omitted in the result

table are model specifications which include control parameters for seasonal effects (DSt), com-

modity market volatility (DCvolt), wind speed (DWt) or precipitation level (DPt). None of these

variables show significant effect on the correlation structure between the five return series, either

as a single explanatory variable or in combination with other controls. However, presented are

the results for model specifications including the April 2006 oversupply event (Apr06t), static

merit order (DMt) and extreme low temperature (DTt) dummies.

Estimated by itself (AG-DCC-X-a), the April 2006 oversupply event dummy is statistically

significant at the 5% level. That is, the discrete drop in the price of carbon emission allowances

in April 2006 resulted in significantly reduced correlation between carbon emission allowances

and all other series in the model. This result supports the findings of Kanamura (2010). They

estimate, also by means of the DCC framework, a reduced correlation between carbon emission

allowances and major stock indices during the April 2006 event.

The effect of the static merit order regimes is analysed in models AG-DCC-X (b) and (c).

The results in the fifth column (AG-DCC-Xb) of table 5 show a statistically significant effect of

the static merit order dummy when estimated by itself. Adding the April 2006 oversupply event

(AG-DCC-Xc) only marginally changes the effect of the static merit order regime, which remains

significant. The addition of the extreme temperature dummy (AG-DCC-Xd) does not affect the

result. Therefore, a static merit order regime leads to a decoupling of fuel and carbon prices.

Conditional correlation between natural gas and emission allowances is significantly reduced,

which is robust to the inclusion of other relevant control variables. Figure 9 illustrates this

result. The bottom panel highlights periods during which the fuel-choice of power generators is

set in either natural gas or hard coal, i.e. the merit order is static. During those periods, small

changes in the price of carbon emission allowances or fuel inputs do not change the merit order
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and no fuel-switching takes place. This leads to a decoupling of prices and a reduced conditional

correlations, as estimated by the extended DCC methodology.
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Figure 9: Estimated Effect of Decoupling on Cond. Correltation EUA/Ngas

A correctly specified multivariate GARCH model produces standardized residuals which are

free from any remaining heteroskedasticity. The LM test for remaining heteroskedasticity fails

to reject the null-hypothesis of No ARCH Effects35. The chosen lag lengths in the univariate

GARCH estimations are therefore adequate.

In summary, given the employed methodology and data sample, this study is able to reject the

null-hypothesis of no difference in correlation of month-ahead carbon emission allowance and fuel

input returns across merit order regimes in favour of the alternative hypothesis, that is reduced

correlation and decoupling during a static merit order. This result is of value to power generators,

as the risk associated with a given generation technology is a function of this correlation. Given

that changes in relative month-ahead fuel and carbon prices result in static fuel-choices, that is

merit order is static, fuel input and carbon emission allowance prices decouple and reduce the

variability of marginal generation cost. However, a reduction of conditional correlation of month-

ahead electricity and natural gas returns also reduces the self-hedging property of cash-flows

generated from a CCGT power plant.

35Test results are available upon request.
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8 Conclusion

This study has investigated the dynamics of energy, power and carbon futures return correlation.

In particular, it has examined the effect of static merit order in the electricity generation industry

on conditional correlation of carbon emission allowance and natural gas month-ahead futures

returns. Following an introduction of the EU-ETS and related fuel-switching behaviour in the

power generation industry, a brief description of the existing literature outlined a prevailing gap

with regard to the estimation of correlation and the determination of its drivers.

Pairwise correlations between electricity, fuel and carbon emission allowance futures returns

are of key relevance to operators of CCGT power generation plants. They use forward natural gas

and baseload power markets, such as the one-month ahead market, to lock in a given generation

profit. Cash-flows of CCGT plants are self-hedged, to the extent that electricity, natural gas and

carbon prices naturally co-move. Hence, the degree to which the same strategy of selling a given

share of output forward locks in a constant profit over time depends on the correlation among

fuel inputs, carbon and electricity returns.

Data characteristics, such as fat tails in the empirical distribution as well as clustering of

volatility, suggested the use of a GARCH-type estimation framework. Computational advantages

favoured the use of a Dynamic Conditional Correlation model. A generalized DCC model, which

both accounts for heterogeneity in the correlation parameters across series as well for asymmetries

of correlation sensitivities to standardized innovations, has been extended by a set of relevant con-

trol variables. These control variables included indicator variables for the April 2006 oversupply

event in the EUA market, seasonal effects, high commodity market volatility, extreme weather

conditions (air temperature, wind speed and precipitation), and finally static merit order regimes.

Based on daily return data from April 2005 to August 2010, the estimation results are summa-

rized as follows. First, conditional correlation of all series in the sample is clearly time-varying.

That is, the relationship between them changes over time, which significantly affects the self-

hedging property of CCGT investments. Second, the DCC methodology yields much smoother

conditional correlations when compared to unconditional correlation measures. In particular, the

DCC correlation estimate of month-ahead electricity and natural gas futures returns describes a

much more stable relationship between the variables when compared to a rolling window corre-

lation measure.

Third, model extensions suggest that there exists significant heterogeneity in the correlation

parameters across series and that only some control variables matter. In particular, asymmetries

in the sensitivity of correlations to shocks can only be detected for hard coal and crude oil

returns. Importantly, extreme weather, seasonal and high commodity market volatility controls

show no statistically significant effect on correlation. As expected, the April 2006 oversupply

event significantly reduces conditional correlation between the series in the model.

Finally, the static merit order control variable is significantly positive, which is the key result

of this study. The main working hypothesis of identical correlation between carbon emission

allowances and natural gas returns across merit order regimes is rejected in favour of the alterna-
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tive hypothesis, namely a reduced correlation during static merit order regimes. This means that

there is a statistically significant decoupling of electricity, fuel and carbon month-ahead returns

during periods in which fuel-choices in the power sector are set in either hard coal or natural gas.

During those periods there is no incentive to switch input-fuels as a response to price changes

and the link between fuel and carbon prices is broken. This effect remains robust to the inclusion

of other relevant controls.

Looking ahead, the estimation methodology can be improved. In particular, the AG-DCC-X

model restricts control variables to be positive and only enter the denominator of each correla-

tion element. Both restrictions ensure positive definiteness of Qt, and therefore the conditional

correlation matrix Rt, yet limit the effect of controls on correlation to be one-sided. Hence, the

development of an unrestricted DCC model with control variables, which allow for a potentially

two-sided effect on correlation, is desirable. Further, given that CCGT operators only sell a share

of output on the month-ahead market, an investigation of correlations between electricity, natural

gas and carbon future contracts along different parts of the forward curve might be of interest.
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Appendix A Extension: Econometric Specification

A.1 The Asymmetric Generalized DCC Model

Modelling correlation across asset classes requires some degree of flexibility in the estimation

procedure. To achieve this, Hafner and Frances (2003) and Engle (2009) propose a Generalized

Dynamic Conditional Correlation (G-DCC) model, which allows for asset specific correlation

parameters. The correlation process of the G-DCC model is given by

Model 2 Qt = (Q̄−A′Q̄A−B′Q̄B) +A′ξt−1ξ
′
t−1A+B′ Qt−1 B (25)

where A and B are k × k diagonal parameter matrices, such that A = {αii} and B = {βii}.
In order to maintain positive definiteness of Qt, αii + βii < 1 and αii, βjj ≥ 0, ∀i, j. This

re-parameterization of the initial DCC model allows for a high degree of heterogeneity in the

correlations. Engle (2009) discusses the effect of a generalization of the form given in equation

(25). Unlike in the DCC model, the G-DCC model can result in very different correlation patterns.

High (low) values for αii combined with low (high) values for βii result in very flat (fluctuating)

correlations of asset i with any other asset in the model36. A typical element of Qt in Model 2 is

given by

qij,t = (q̄ij − αiiαjj q̄ij − βiiβjj q̄ij) + αiiαjj(ξi,t−1ξj,t−1) + βiiβjj qij,t−1 (26)

A further generalization is achieved by allowing for asymmetries in the G-DCC model. Cappiello

et al. (2006) propose the Asymmetric Generalized Dynamic Conditional Correlation (AG-DCC)

model as37

Model 3 Qt = (Q̄−A′Q̄A−B′Q̄B −G′N̄G)

+A′ξt−1ξ
′
t−1A+B′ Qt−1 B +G′ηt−1η

′
t−1G (27)

where G is a k × k diagonal parameter matrix, such that G = {gii}. ηt = {ηi,t} is a k × 1

vector with ηi,t = min(ξi,t, 0). N̄ is a k × k matrix of constants, such that N̄ = T−1
∑T

t=1 ηtη
′
t.

Following Cappiello et al. (2006), the new parameter restrictions to maintain positive definiteness

of Qt are given by αii + βii + ηiκ < 1 and αii, βii, ηi ≥ 0 for i = 1...k, where κ is the maximum

eigenvalue of Q̄
1
2 N̄Q̄

1
2 .

Models 2 and 3 refined the base case estimation, however, will not allow to test the key

hypothesis of this study, that is the effect of static merit order regimes on correlation. The next

section will outline how the estimation procedure can be extended by adding relevant control

variables.

36αii can be regarded as the sensitivity of the correlation of asset i with other assets to correlation innovations,
Hafner and Frances (2003).

37It is obvious from the specification in equation (27), that Model 3 nests Model 2 and a simple likelihood ratio
test is therefore adequate to test the validity of the restrictions in Model 2.
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A.2 The AG-DCC Model with Control Variables

In the final step of the estimation procedure, a vector of control variables is added to the previous

generalized DCC model. This study will employ the AG-DCC-X model, proposed by Vargas

(2008), given by

Model 4 Qt = (Q̄−A′Q̄A−B′Q̄B −G′N̄G−K(ψ′x̄))

+A′ξt−1ξ
′
t−1A+B′ Qt−1 B +G′ηt−1η

′
t−1G

+K(ψ′xt−1) (28)

where K is a k-dimensional identity matrix, xt is a p × 1 vector of control variables with cor-

responding p × 1 parameter vector ψ = {ψj}. x̄ is a p × 1 vector of constants, such that

x̄ = T−1
∑T

t=1 xt. Following Vargas (2008) and the specification of K, Qt in equation (28) is

positive definite as long as ψj ∈ (0, 1) for j = 1...p. The rest of this section will discuss the choice

of control variables in xt, namely

xt = (Apr06,t DSt DCvolt DTt DWt DPt DMt)
′

Apr06,t is a dummy variable controlling for the compliance event in April 2006, it is equal to one

from April 25, 2006 until June 23, 2006, and zero otherwise. DSt is a dummy variable equal to

one for observations during the first and fourth annual quarter (cold season), and zero otherwise.

It examines the sensitivity of the correlation between energy and carbon returns to seasonal

influences. Time of the year greatly affects electricity demand through its effect on heating and

lighting and is therefore an important control in the correlation specification.

DCvolt is a control variable equal to one if the rolling window standard deviation of the

Standard & Poor’s Goldman Sachs Non-Energy Commodity Index (SPCI) at time t has been in

the fifth quintile of the its distribution for the consecutive previous four days, and zero otherwise.

Following Chevallier et al. (2009), this attempts to control for the effect of large global commodity

market volatility38.

DTt is an extreme temperature indicator variable, equal to one if the temperature at time t

has been in the first (fifth) quintile of the UK mean temperature distribution for the consecutive

previous four days, and zero otherwise. DWt (DPt) is an extreme high wind (precipitation)

indicator variable, equal to one if the wind speed (precipitation level) at time t has been in the

fifth quintile of the UK mean wind speed (precipitation) distribution for the consecutive previous

four days, and zero otherwise39.

38Chevallier et al. (2009) used the standard deviation of the Reuters/Commodity Research Bureau (CRB) Futures
Index to capture risk factors connected to global commodity markets. The present study, however, will use the
Standard & Poor’s Goldman Sachs Non-Energy Commodity Index (SPCI). The reason for using a non-energy
commodity index as opposed to the CRB Futures Index is to avoid potential problems arising from multicollinearity
with right-hand-side natural gas and coal return volatilities. The rolling window standard deviation of the SPCI
is calculated, using a window size of 20 trading days.

39See table 1 for the number of observations in each variable.
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Finally, DMt is an indicator variable, equal to one if the merit order of power generation in

period t is static in either natural gas or hard coal and zero if the merit order is mixed. Using

the definition mixed merit order rgimes in equation (6), DMt = 1− ιt.

A.3 Testing for the Existence of Merit Order Regimes

The advantage of the DCC framework is the explicit modelling of the conditional correlation

processes, separate from the estimation of conditional variances in the first stage. This section

will illustrate how the DCC framework allows to test our key hypothesis regarding the existence

of merit order regimes in conditional correlation between carbon and energy returns. Take a

typical element of Qt in Model 4, for i = j it is given by

qij,t = (q̄ij − αiiαjj q̄ij − βiiβjj q̄ij − gigjn̄ij −ψ′x̄)

+ αiiαjj(ξi,t−1ξj,t−1) + βiiβjj qij,t−1 + gigjηi,t−1ηj,t−1 +ψ′xt−1 (29)

whereas for the off-diagonal term, i 6= j, the control terms vanish, such that

qij,t = (q̄ij − αiiαjj q̄ij − βiiβjj q̄ij − gigjn̄ij)

+ αiiαjj(ξi,t−1ξj,t−1) + βiiβjj qij,t−1 + gigjηi,t−1ηj,t−1 (30)

Some modification are necessary to clearly define the key hypothesis test. Let

qij,t = q̃ij,t +ψ′(xt−1 − x̄) for i = j

qij,t = q̃ij,t for i 6= j

where for any i and j, q̃ij,t is defined as

q̃ij,t = (q̄ij − αiiαjj q̄ij − βiiβjj q̄ij − gigjn̄ij)

+ αiiαjj(ξi,t−1ξj,t−1) + βiiβjj qij,t−1 + gigjηi,t−1ηj,t−1

A typical element of resulting conditional correlation matrix Rt in Model 4 is then given by

ρij,t =
q̃ij,t√

(q̃ii,t +ψ′(xt−1 − x̄))(q̃jj,t +ψ′(xt−1 − x̄))
(31)

where the control variables now enter in the denominator of the correlation process. Hence,

equation (31) forms the basis for hypothesis testing. Hypotheses regarding the significance of

any of the p control variables on the correlation processes between energy, carbon and power
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returns are formulated as follows40, for i = 1...p

H
(i)
0 : ψi = 0

against the alternative

H
(i)
1 : ψi > 0

At the focus of the analysis is the effect of static merit order on the correlation between natural gas

and carbon emission allowances. Controlling for all other factors in xt, such as season, weather

and commodity market volatility, this is formulated as

H0 : ψDM = 0 (32)

against the alternative

H1 : ψDM > 0 (33)

If the estimation results reject the null hypothesis in equation (32), in favour of a significantly

positive parameter ψDM , then there exists a static merit order regime, in which correlation

between carbon emission allowances and natural gas returns is reduced.

40Recall that x̄ = T−1 ∑T
t=1 xt and xt is a vector of indicator variables, such that 0 < x̄i < 1 for i = 1...p.

Therefore, if xi,t is equal to one, the element (xi,t − x̄i) is strictly positive and the corresponding parameter ψi

measures to what extent the control variable i increases the denominator in equation (31).
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Appendix B Tabulated Results

B.1 First Step: Univariate GARCH

Table 4: GARCH(1, q) Conditional Variances

Residual Series EUA Gas Coal Oil Eelectr.

constant 7.86E-05** 0.000957** 1.96E-06** 1.16E-05** 4.78E-05**

[9.0E-10] [3.0E-7] [1.0E-12] [1.8E-11] [7.4E-10]

α 0.3878** 0.2090** 0.0210** 0.0762** 0.2686**

[0.0049] [0.0389] [0.0001] [0.0002] [0.0043]

β1 0.0886** 0.4210** 0.9724** 0.9004** 0.7314**

[0.0117] [0.0347] [0.0001] [0.0004] [0.0035]

β2 0.2556** (-) (-) (-) (-)

[0.0277]

β3 0.0230** (-) (-) (-) (-)

[0.0008]

β4 0.1656** (-) (-) (-) (-)

[0.0142]

β5 0.0794** (-) (-) (-) (-)

[0.0083]

α+
∑q

i=1 βi 0.999998 0.630018 0.993423 0.976585 0.999998
∗∗ significant at the 5% level. ∗ significant at the 10% level.

[...] Standard errors in parentheses.
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B.2 Second Step: DCC Model 1-4

Table 5: DCC Estimation Results - Models 1 to 4

Model 1 Model 2 Model 3 Model 4 Model 4 Model 4

DCC GDCC AG-DCC AG-DCC-Xa AG-DCC-Xb AG-DCC-Xc

α(11) 0.0242** 0.3033** 0.3111** 0.1636** 0.2878** 0.2782**

[3.7E-5] [0.0141] [0.0162] [0.0051] [0.0203] [0.0271]

α22 (-) 0.2397** 0.2311** 0.0095** 0.2462** 0.2620**

[0.0097] [0.0139] [1.9E-5] [0.0439] [0.0503]

α33 (-) 0.0222** 2.00E-06 2.00E-06 2.00E-06 2.00E-06

[0.0026] [0.0056] [0.0225] [0.0043] [0.0082]

α44 (-) 0.1559** 0.1556** 0.3511** 0.1561** 0.1476**

[0.0120] [0.0175] [0.1711] [0.0627] [0.0363]

α55 (-) 0.3791** 0.3904** 0.0059** 0.4242** 0.3920**

[0.0108] [0.0123] [2.4E-5] [0.0125] [0.0068]

β(11) 0.9304** 0.5252 0.4976 0.8347** 0.6665** 0.5998**

[0.0005] [0.5698] [0.4291] [0.0076] [0.3233] [0.2076]

β22 (-) 0.7603** 0.7689** 0.9905** 0.7499** 0.7380**

[0.0054] [0.0062] [9.7E-6] [0.0510] [0.0276]

β33 (-) 0.9730** 0.4780 0.1968 0.3567 0.4415

[0.0011] [1.1789] [0.7679] [10.6549] [1.4600]

β44 (-) 0.3063 0.3241 0.1399 0.3133 0.3981

[0.9269] [0.6249] [0.1294] [4.9735] [1.0622]

β55 (-) 0.6209** 0.6096** 0.9941** 0.5758 0.6080

[0.0328] [0.0372] [7.3E-6] [0.9172] [0.5793]

g1 (-) (-) 0.0470 0.0023 0.0417 0.0948

[0.0298] [0.0050] [0.1842] [0.0824]

g2 (-) (-) 2.00E-06 2.00E-06 2.00E-06 2.00E-06

[0.0361] [4.6E-5] [0.1279] [0.0670]

g3 (-) (-) 0.3535** 0.3860** 0.3542** 0.3564**

[0.0411] [0.0752] [0.0864] [0.0491]

g4 (-) (-) 0.7089** 0.6934** 0.6177 0.6189**

[0.3181] [0.2000] [0.7149] [0.2859]

g5 (-) (-) 2.00E-06 2.00E-06 2.00E-06 2.00E-06

[0.0484] [2.2E-5] [0.1044] [0.0556]

ψApr06 (-) (-) (-) 0.1056** (-) 0.5477

[0.0026] [1.6371]

ψDM (-) (-) (-) (-) 0.2919** 0.2898**

[0.1149] [0.0704]

ψDT (-) (-) (-) (-) (-) 2.00E-06

[0.0414]

Log-Likelihood -15170.8658 -15172.4459 -15178.03097 -15165.4431 -15191.1725 -15195.1777
∗∗ significant at the 5% level. ∗ significant at the 10% level. [...] Standard errors in parentheses.

The lag order of all (AG)-DCC-(X) models is set to (1,1).

44


	TitlePage1123&EPRG1107.pdf
	1123&EPRG1107.pdf
	abstract.pdf
	WP1_03Feb2011.pdf


