30 research outputs found

    Two Electrons in a Quantum Dot: A Unified Approach

    Full text link
    Low-lying energy levels of two interacting electrons confined in a two-dimensional parabolic quantum dot in the presence of an external magnetic field have been revised within the frame of a novel model. The present formalism, which gives closed algebraic solutions for the specific values of magnetic field and spatial confinement length, enables us to see explicitly individual effects of the electron correlation.Comment: 14 page

    First-order intertwining operators and position-dependent mass Schrodinger equations in d dimensions

    Full text link
    The problem of d-dimensional Schrodinger equations with a position-dependent mass is analyzed in the framework of first-order intertwining operators. With the pair (H, H_1) of intertwined Hamiltonians one can associate another pair of second-order partial differential operators (R, R_1), related to the same intertwining operator and such that H (resp. H_1) commutes with R (resp. R_1). This property is interpreted in superalgebraic terms in the context of supersymmetric quantum mechanics (SUSYQM). In the two-dimensional case, a solution to the resulting system of partial differential equations is obtained and used to build a physically-relevant model depicting a particle moving in a semi-infinite layer. Such a model is solved by employing either the commutativity of H with some second-order partial differential operator L and the resulting separability of the Schrodinger equation or that of H and R together with SUSYQM and shape-invariance techniques. The relation between both approaches is also studied.Comment: 25 pages, no figure, 1 paragraph added in section 4, 1 additional referenc

    Spectrum generating algebras for position-dependent mass oscillator Schrodinger equations

    Full text link
    The interest of quadratic algebras for position-dependent mass Schr\"odinger equations is highlighted by constructing spectrum generating algebras for a class of d-dimensional radial harmonic oscillators with d2d \ge 2 and a specific mass choice depending on some positive parameter α\alpha. Via some minor changes, the one-dimensional oscillator on the line with the same kind of mass is included in this class. The existence of a single unitary irreducible representation belonging to the positive-discrete series type for d2d \ge 2 and of two of them for d=1 is proved. The transition to the constant-mass limit α0\alpha \to 0 is studied and deformed su(1,1) generators are constructed. These operators are finally used to generate all the bound-state wavefunctions by an algebraic procedure.Comment: 21 pages, no figure, 2 misprints corrected; published versio

    Solution of the Dirac equation with position-dependent mass in the Coulomb field

    Full text link
    We obtain exact solution of the Dirac equation for a charged particle with position-dependent mass in the Coulomb field. The effective mass of the spinor has a relativistic component which is proportional to the square of the Compton wavelength and varies as 1/r. It is suggested that this model could be used as a tool in the renormalization of ultraviolet divergences in field theory. The discrete energy spectrum and spinor wave-function are obtained explicitly.Comment: 6 page

    Pseudo-Hermitian versus Hermitian position-dependent-mass Hamiltonians in a perturbative framework

    Full text link
    We formulate a systematic algorithm for constructing a whole class of Hermitian position-dependent-mass Hamiltonians which, to lowest order of perturbation theory, allow a description in terms of PT-symmetric Hamiltonians. The method is applied to the Hermitian analogue of the PT-symmetric cubic anharmonic oscillator. A new example is provided by a Hamiltonian (approximately) equivalent to a PT-symmetric extension of the one-parameter trigonometric Poschl-Teller potential.Comment: 13 pages, no figure, modified presentation, 6 additional references, published versio

    A general scheme for the effective-mass Schrodinger equation and the generation of the associated potentials

    Full text link
    A systematic procedure to study one-dimensional Schr\"odinger equation with a position-dependent effective mass (PDEM) in the kinetic energy operator is explored. The conventional free-particle problem reveals a new and interesting situation in that, in the presence of a mass background, formation of bound states is signalled. We also discuss coordinate-transformed, constant-mass Schr\"odinger equation, its matching with the PDEM form and the consequent decoupling of the ambiguity parameters. This provides a unified approach to many exact results known in the literature, as well as to a lot of new ones.Comment: 16 pages + 1 figure; minor changes + new "free-particle" problem; version published in Mod. Phys. Lett.
    corecore