18 research outputs found

    Association Patterns in Saproxylic Insect Networks in Three Iberian Mediterranean Woodlands and Their Resistance to Microhabitat Loss

    Get PDF
    The assessment of the relationship between species diversity, species interactions and environmental characteristics is indispensable for understanding network architecture and ecological distribution in complex networks. Saproxylic insect communities inhabiting tree hollow microhabitats within Mediterranean woodlands are highly dependent on woodland configuration and on microhabitat supply they harbor, so can be studied under the network analysis perspective. We assessed the differences in interacting patterns according to woodland site, and analysed the importance of functional species in modelling network architecture. We then evaluated their implications for saproxylic assemblages’ persistence, through simulations of three possible scenarios of loss of tree hollow microhabitat. Tree hollow-saproxylic insect networks per woodland site presented a significant nested pattern. Those woodlands with higher complexity of tree individuals and tree hollow microhabitats also housed higher species/interactions diversity and complexity of saproxylic networks, and exhibited a higher degree of nestedness, suggesting that a higher woodland complexity positively influences saproxylic diversity and interaction complexity, thus determining higher degree of nestedness. Moreover, the number of insects acting as key interconnectors (nodes falling into the core region, using core/periphery tests) was similar among woodland sites, but the species identity varied on each. Such differences in insect core composition among woodland sites suggest the functional role they depict at woodland scale. Tree hollows acting as core corresponded with large tree hollows near the ground and simultaneously housing various breeding microsites, whereas core insects were species mediating relevant ecological interactions within saproxylic communities, e.g. predation, competitive or facilitation interactions. Differences in network patterns and tree hollow characteristics among woodland sites clearly defined different sensitivity to microhabitat loss, and higher saproxylic diversity and woodland complexity showed positive relation with robustness. These results highlight that woodland complexity goes hand in hand with biotic and ecological complexity of saproxylic networks, and together exhibited positive effects on network robustness.The research Projects I+D CGL2011-23658 y CGL2012-31669 of the Spanish Minister of Science provided economic support

    Effectiveness of three sampling methods to survey saproxylic beetle assemblages in Mediterranean woodland

    No full text
    The choice of sampling methods to survey saproxylic beetles is a key aspect to assessing conservation strategies for one of the most endangered assemblages in Europe. We evaluated the efficiency of three sampling methods: baited tube traps (TT), window traps in front of a hollow opening (WT), and emergence traps covering tree hollows (ET) to study richness and diversity of saproxylic beetle assemblages at species and family levels in Mediterranean woodlands. We also examined trap efficiency to report ecological diversity, and changes in the relative richness and abundance of species forming trophic guilds: xylophagous, saprophagous/saproxylophagous, xylomycetophagous, predators and commensals. WT and ET were similarly effective in reporting species richness and diversity at species and family levels, and provided an accurate profile of both the flying active and hollow-linked saproxylic beetle assemblages. WT and ET were the most complementary methods, together reporting more than 90 % of richness and diversity at both species and family levels. Diversity, richness and abundance of guilds were better characterized by ET, which indicates higher efficiency in outlining the ecological community of saproxylics that inhabit tree hollows. TT were the least effective method at both taxonomic levels, sampling a biased portion of the beetle assemblage attracted to trapping principles, however they could be used as a specific method for families such as Bostrichiidae, Biphyllidae, Melyridae, Mycetophagidae or Curculionidae Scolytinae species. Finally, ET and WT combination allows a better characterization of saproxylic assemblages in Mediterranean woodland, by recording species with different biology and linked to different microhabitat types.Research Projects CGL2008-04472, CGL2009-09656 and CGL2011-23658 of the Spanish Ministry of Science and Innovation, and LIFE-07/NAT/00762 of the European Commission LIFE-Nature
    corecore