235 research outputs found

    Cell-based expression cloning for identification of polypeptides that hypersensitize mammalian cells to mitotic arrest

    Get PDF
    Microtubule inhibitors such as Vinblastine and Paclitaxel are chemotherapy agents that activate the mitotic spindle checkpoint, arresting cells in mitosis and leading to cell death. The pathways that connect mitotic arrest to cell death are not well characterized. We developed a mammalian cell-based cDNA cloning method to isolate proteins and protein fragments whose expression inhibits colony formation in the presence of microtubule inhibitors. Understanding how these proteins impact cellular responses to microtubule drugs will lead to better understanding of the biochemical pathways connecting mitotic arrest and cell death in mammalian cells and may provide novel targets that can enhance microtubule inhibitor-mediated chemotherapy

    The receptor tyrosine kinase EphB4 is overexpressed in ovarian cancer, provides survival signals and predicts poor outcome

    Get PDF
    EphB4 is a member of the largest family of transmembrane receptor tyrosine kinases and plays critical roles in axonal pathfinding and blood vessel maturation. We wanted to determine the biological role of EphB4 in ovarian cancer. We studied the expression of EphB4 in seven normal ovarian specimens and 85 invasive ovarian carcinomas by immunohistochemistry. EphB4 expression was largely absent in normal ovarian surface epithelium, but was expressed in 86% of ovarian cancers. EphB4 expression was significantly associated with advanced stage of disease and the presence of ascites. Overexpression of EphB4 predicted poor survival in both univariate and multivariate analyses. We also studied the biological significance of EphB4 expression in ovarian tumour cells lines in vitro and in vivo. All five malignant ovarian tumour cell lines tested expressed higher levels of EphB4 compared with the two benign cell lines. Treatment of malignant, but not benign, ovarian tumour cell lines with progesterone, but not oestrogen, led to a 90% reduction in EphB4 levels that was associated with 50% reduction in cell survival. Inhibition of EphB4 expression by specific siRNA or antisense oligonucleotides significantly inhibited tumour cell viability by inducing apoptosis via activation of caspase-8, and also inhibited tumour cell invasion and migration. Furthermore, EphB4 antisense significantly inhibited growth of ovarian tumour xenografts and tumour microvasculature in vivo. Inhibition of EphB4 may hence have prognostic and therapeutic utility in ovarian carcinoma

    West Nile Virus Genetic Diversity is Maintained during Transmission by Culex pipiens quinquefasciatus Mosquitoes

    Get PDF
    Due to error-prone replication, RNA viruses exist within hosts as a heterogeneous population of non-identical, but related viral variants. These populations may undergo bottlenecks during transmission that stochastically reduce variability leading to fitness declines. Such bottlenecks have been documented for several single-host RNA viruses, but their role in the population biology of obligate two-host viruses such as arthropod-borne viruses (arboviruses) in vivo is unclear, but of central importance in understanding arbovirus persistence and emergence. Therefore, we tracked the composition of West Nile virus (WNV; Flaviviridae, Flavivirus) populations during infection of the vector mosquito, Culex pipiens quinquefasciatus to determine whether WNV populations undergo bottlenecks during transmission by this host. Quantitative, qualitative and phylogenetic analyses of WNV sequences in mosquito midguts, hemolymph and saliva failed to document reductions in genetic diversity during mosquito infection. Further, migration analysis of individual viral variants revealed that while there was some evidence of compartmentalization, anatomical barriers do not impose genetic bottlenecks on WNV populations. Together, these data suggest that the complexity of WNV populations are not significantly diminished during the extrinsic incubation period of mosquitoes

    Sleep quality, the neglected outcome variable in clinical studies focusing on locomotor system; a construct validation study

    Get PDF
    Background: In addition to general health and pain, sleep is highly relevant to judging the well-being of an individual. Of these three important outcome variables, however, sleep is neglected in most outcome studies. Sleep is a very important resource for recovery from daily stresses and strains, and any alteration of sleep will likely affect mental and physical health, especially during disease. Sleep assessment therefore should be standard in all population-based or clinical studies focusing on the locomotor system. Yet current sleep assessment tools are either too long or too specific for general use. Methods: Based on a literature review and subsequent patient-based rating of items, an expert panel designed a four-item questionnaire about sleep. Construct validation of the questionnaire in a random sample of the German-speaking Swiss population was performed in 2003. Reliability, correlation, and tests for internal consistency and validity were analyzed. Results: Overall, 16,634 (70%) out of 23,763 eligible individuals participated in the study. Test-retest reliability coefficients ranged from 0.72 to 0.87, and a Cronbach’s alpha of 0.83 indicates good internal consistency. Results show a moderate to good correlation between sleep disturbances and health perception, and between sleep disturbances and overall pain. Conclusions: The Sleep Standard Evaluation Questionnaire (SEQ-Sleep) is a reliable and short tool with confirmed construct validity for sleep assessment in population-based observational studies. It is easy to administer and therefore suitable for postal surveys of the general population. Criterion validity remains to be determined

    Extensive DNA End Processing by Exo1 and Sgs1 Inhibits Break-Induced Replication

    Get PDF
    Homology-dependent repair of DNA double-strand breaks (DSBs) by gene conversion involves short tracts of DNA synthesis and limited loss of heterozygosity (LOH). For DSBs that present only one end, repair occurs by invasion into a homologous sequence followed by replication to the end of the chromosome resulting in extensive LOH, a process called break-induced replication (BIR). We developed a BIR assay in Saccharomyces cerevisiae consisting of a plasmid with a telomere seeding sequence separated from sequence homologous to chromosome III by an I-SceI endonuclease recognition site. Following cleavage of the plasmid by I-SceI in vivo, de novo telomere synthesis occurs at one end of the vector, and the other end invades at the homologous sequence on chromosome III and initiates replication to the end of the chromosome to generate a stable chromosome fragment (CF). BIR was infrequent in wild-type cells due to degradation of the linearized vector. However, in the exo1Δ sgs1Δ mutant, which is defective in the 5′-3′ resection of DSBs, the frequency of BIR was increased by 39-fold. Extension of the invading end of the plasmid was detected by physical analysis two hours after induction of the I-SceI endonuclease in the wild-type exo1Δ, sgs1Δ, and exo1Δ sgs1Δ mutants, but fully repaired products were only visible in the exo1Δ sgs1Δ mutant. The inhibitory effect of resection was less in a plasmid-chromosome gene conversion assay, compared to BIR, and products were detected by physical assay in the wild-type strain. The rare chromosome rearrangements due to BIR template switching at repeated sequences were increased in the exo1Δ sgs1Δ mutant, suggesting that reduced resection can decrease the fidelity of homologous recombination

    Increased Monocyte Turnover from Bone Marrow Correlates with Severity of SIV Encephalitis and CD163 Levels in Plasma

    Get PDF
    Cells of the myeloid lineage are significant targets for human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in monkeys. Monocytes play critical roles in innate and adaptive immunity during inflammation. We hypothesize that specific subsets of monocytes expand with AIDS and drive central nervous system (CNS) disease. Additionally, there may be expansion of cells from the bone marrow through blood with subsequent macrophage accumulation in tissues driving pathogenesis. To identify monocytes that recently emigrated from bone marrow, we used 5-bromo-2′-deoxyuridine (BrdU) labeling in a longitudinal study of SIV-infected CD8+ T lymphocyte depleted macaques. Monocyte expansion and kinetics in blood was assessed and newly migrated monocyte/macrophages were identified within the CNS. Five animals developed rapid AIDS with differing severity of SIVE. The percentages of BrdU+ monocytes in these animals increased dramatically, early after infection, peaking at necropsy where the percentage of BrdU+ monocytes correlated with the severity of SIVE. Early analysis revealed changes in the percentages of BrdU+ monocytes between slow and rapid progressors as early as 8 days and consistently by 27 days post infection. Soluble CD163 (sCD163) in plasma correlated with the percentage of BrdU+ monocytes in blood, demonstrating a relationship between monocyte activation and expansion with disease. BrdU+ monocytes/macrophages were found within perivascular spaces and SIVE lesions. The majority (80–90%) of the BrdU+ cells were Mac387+ that were not productively infected. There was a minor population of CD68+BrdU+ cells (<10%), very few of which were infected (<1% of total BrdU+ cells). Our results suggest that an increased rate of monocyte recruitment from bone marrow into the blood correlates with rapid progression to AIDS, and the magnitude of BrdU+ monocytes correlates with the severity of SIVE

    Graphene Oxide-Gallic Acid Nanodelivery System for Cancer Therapy

    Get PDF
    Despite the technological advancement in the biomedical science, cancer remains a life-threatening disease. In this study, we designed an anticancer nanodelivery system using graphene oxide (GO) as nanocarrier for an active anticancer agent gallic acid (GA). The successful formation nanocomposite (GOGA) was characterized using XRD, FTIR, HRTEM, Raman, and UV/Vis spectroscopy. The release study shows that the release of GA from the designed anticancer nanocomposite (GOGA) occurs in a sustained manner in phosphate-buffered saline (PBS) solution at pH 7.4. In in vitro biological studies, normal fibroblast (3T3) and liver cancer cells (HepG2) were treated with different concentrations of GO, GOGA, and GA for 72 h. The GOGA nanocomposite showed the inhibitory effect to cancer cell growth without affecting normal cell growth. The results of this research are highly encouraging to go further for in vivo studies

    The BMP Antagonist Follistatin-Like 1 Is Required for Skeletal and Lung Organogenesis

    Get PDF
    Follistatin-like 1 (Fstl1) is a secreted protein of the BMP inhibitor class. During development, expression of Fstl1 is already found in cleavage stage embryos and becomes gradually restricted to mesenchymal elements of most organs during subsequent development. Knock down experiments in chicken and zebrafish demonstrated a role as a BMP antagonist in early development. To investigate the role of Fstl1 during mouse development, a conditional Fstl1 KO allele as well as a Fstl1-GFP reporter mouse were created. KO mice die at birth from respiratory distress and show multiple defects in lung development. Also, skeletal development is affected. Endochondral bone development, limb patterning as well as patterning of the axial skeleton are perturbed in the absence of Fstl1. Taken together, these observations show that Fstl1 is a crucial regulator in BMP signalling during mouse development

    TRAF6 and IRF7 Control HIV Replication in Macrophages

    Get PDF
    The innate immune system recognizes virus infection and evokes antiviral responses which include producing type I interferons (IFNs). The induction of IFN provides a crucial mechanism of antiviral defense by upregulating interferon-stimulated genes (ISGs) that restrict viral replication. ISGs inhibit the replication of many viruses by acting at different steps of their viral cycle. Specifically, IFN treatment prior to in vitro human immunodeficiency virus (HIV) infection stops or significantly delays HIV-1 production indicating that potent inhibitory factors are generated. We report that HIV-1 infection of primary human macrophages decreases tumor necrosis factor receptor-associated factor 6 (TRAF6) and virus-induced signaling adaptor (VISA) expression, which are both components of the IFN signaling pathway controlling viral replication. Knocking down the expression of TRAF6 in macrophages increased HIV-1 replication and augmented the expression of IRF7 but not IRF3. Suppressing VISA had no impact on viral replication. Overexpression of IRF7 resulted in enhanced viral replication while knocking down IRF7 expression in macrophages significantly reduced viral output. These findings are the first demonstration that TRAF6 can regulate HIV-1 production and furthermore that expression of IRF7 promotes HIV-1 replication

    Assessing the Value of Recreational Divers for Censusing Elasmobranchs

    Get PDF
    BACKGROUND: Around the world, researchers are using the observations and experiences of citizens to describe patterns in animal populations. This data is often collected via ongoing sampling or by synthesizing past experiences. Since elasmobranchs are relatively rare, obtaining data for broad-scale trend analysis requires high sampling effort. Elasmobranchs are also relatively large and conspicuous and therefore it may be possible to enlist recreational divers to collect data on their occurrence and relative abundance from daily dive activities. For this, however, a good understanding of the value of data collected by recreational divers is essential. METHODOLOGY/PRINCIPAL FINDINGS: Here, we explore the value of recreational divers for censusing elasmobranchs using a diverse set of data sources. First, we use a simulation experiment to explore detection rates of the roving diver technique, used by recreational divers, across a range of fish densities and speeds. Next, using a field survey, we show that inexperienced recreational divers detect and count elasmobranchs as well as experienced recreational divers. Finally, we use semi-structured interviews of recreational dive instructors to demonstrate the value of their recollections in terms of effort and their descriptions of spatial and temporal distributions of sharks in Thailand. CONCLUSIONS/SIGNIFICANCE: Overall, this study provides initial ground-work for using recreational divers for monitoring elasmobranch populations. If used appropriately, citizen-collected data may provide additional information that can be used to complement more standardized surveys and to describe population trends across a range of spatial and temporal scales. Due to the non-extractive nature of this data, recreational divers may also provide important insight into the success of conservation initiatives, such as shark sanctuaries and no-take zones
    corecore