4 research outputs found

    New morphological information on, and species of placoderm fish Africanaspis (Arthrodira, Placodermi) from the Late Devonian of South Africa

    Get PDF
    Here we present a new species of placoderm fish, Africanaspis edmountaini sp. nov., and redescribe Africanaspis doryssa on the basis of new material collected from the type locality of Africanaspis. The new material includes the first head shields of Africanaspis doryssa in addition to soft anatomy for both taxa. Hitherto Africanaspis was entirely described from trunk armour and no record of body and fin outlines had been recorded. In addition the first record of embryonic and juvenile specimens of Africanaspis doryssa is presented and provides a growth series from presumed hatchlings to presumed adults. The presence of a greater number of juveniles compared to adults indicates that the Waterloo Farm fossil site in South Africa represents the first nursery site of arthrodire placoderms known from a cold water environment. The preservation of an ontogenetic series demonstrates that variation within the earlier known sample, initially considered to have resulted from ontogenetic change, instead indicates the presence of a second, less common species Africanaspis edmountaini sp. nov. There is some faunal overlap between the Waterloo Farm fossil site and faunas described from Strud in Belgium and Red Hill, Pennsylvania, in north America, supporting the concept of a more cosmopolitan vertebrate fauna in the Famennian than earlier in the Devonian

    Development of the Synarcual in the Elephant Sharks (Holocephali; Chondrichthyes): Implications for Vertebral Formation and Fusion

    Get PDF
    The synarcual is a structure incorporating multiple elements of two or more anterior vertebrae of the axial skeleton, forming immediately posterior to the cranium. It has been convergently acquired in the fossil group ‘Placodermi’, in Chondrichthyes (Holocephali, Batoidea), within the teleost group Syngnathiformes, and to varying degrees in a range of mammalian taxa. In addition, cervical vertebral fusion presents as an abnormal pathology in a variety of human disorders. Vertebrae develop from axially arranged somites, so that fusion could result from a failure of somite segmentation early in development, or from later heterotopic development of intervertebral bone or cartilage. Examination of early developmental stages indicates that in the Batoidea and the ‘Placodermi’, individual vertebrae developed normally and only later become incorporated into the synarcual, implying regular somite segmenta- tion and vertebral development. Here we show that in the holocephalan Callorhinchus milii, uniform and regular vertebral segmentation also occurs, with anterior individual vertebra developing separately with subsequent fusion into a synarcual. Vertebral elements forming directly behind the synarcual continue to be incorporated into the synarcual through growth. This appears to be a common pattern through the Vertebrata. Research into human disor- ders, presenting as cervical fusion at birth, focuses on gene misexpression studies in humans and other mammals such as the mouse. However, in chondrichthyans, vertebral fusion represents the normal morphology, moreover, taxa such Leucoraja (Batoidea) and Callorhinchus (Holocephali) are increasingly used as laboratory animals, and the Callor- hinchus genome has been sequenced and is available for study. Our observations on synarcual development in three major groups of early jawed vertebrates indicate that fusion involves heterotopic cartilage and perichondral bone/mineralised cartilage developing outside the regular skeleton. We suggest that chondrichthyans have potential as ideal extant models for identifying the genes involved in these processes, for application to human skeletal heterotopic disorders

    Early Gnathostome Phylogeny Revisited: Multiple Method Consensus

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.A series of recent studies recovered consistent phylogenetic scenarios of jawed vertebrates, such as the paraphyly of placoderms with respect to crown gnathostomes, and antiarchs as the sister group of all other jawed vertebrates. However, some of the hylogenetic relationships within the group have remained controversial, such as the positions of Entelognathus, ptyctodontids, and the Guiyu-lineage that comprises Guiyu, Psarolepis and Achoania. The revision of the dataset in a recent study reveals a modified phylogenetic hypothesis, which shows that some of these phylogenetic conflicts were sourced from a few inadvertent miscodings. The interrelationships of early gnathostomes are addressed based on a combined new dataset with 103 taxa and 335 characters, which is the most comprehensive morphological dataset constructed to date. This dataset is investigated in a phylogenetic context using maximum parsimony (MP), Bayesian inference (BI) and maximum likelihood (ML) approaches in an attempt to explore the consensus and incongruence between the hypotheses of early gnathostome interrelationships recovered from different methods. Our findings consistently corroborate the paraphyly of placoderms, all `acanthodians' as a paraphyletic stem group of chondrichthyans, Entelognathus as a stem gnathostome, and the Guiyu-lineage as stem sarcopterygians. The incongruence using different methods is less significant than the consensus, and mainly relates to the positions of the placoderm Wuttagoonaspis, the stem chondrichthyan Ramirosuarezia, and the stem osteichthyan LophosteusÐthe taxa that are either poorly known or highly specialized in character complement. Given that the different performances of each phylogenetic approach, our study provides an empirical case that the multiple phylogenetic analyses of morphological data are mutually complementary rather than redundant
    corecore