112 research outputs found

    Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap

    Full text link
    We demonstrate lasing oscillation in a three-dimensional photonic crystal nanocavity. The laser is realized by coupling a cavity mode, which is localized in a complete photonic bandgap and exhibits the highest quality factor of ~38,500, with high-quality semiconductor quantum dots. We show a systematic change in the laser characteristics, including the threshold and the spontaneous emission coupling factor by controlling the crystal size, which consequently changes the strength of photon confinement in the third dimension. This opens up many interesting possibilities for realizing future ultimate light sources and three-dimensional integrated photonic circuits and for more fundamental studies of physics in the field of cavity quantum electrodynamics.Comment: 14 pages, 4 figure

    Histology and symplasmic tracer distribution during development of barley androgenic embryos

    Get PDF
    The present study concerns three aspects of barley androgenesis: (1) the morphology and histology of the embryos during their development, (2) the time course of fluorescent symplasmic tracers’ distribution, and (3) the correlation between symplasmic communication and cell differentiation. The results indicate that barley embryos, which are developing via an androgenic pathway, resemble their zygotic counterparts with respect to their developmental stages, morphology and histology. Analysis of the distribution of the symplasmic tracers, HPTS, and uncaged fluorescein indicates the symplasmic isolation of (1) the protodermis from the underlying cells of the late globular stage onwards, and (2) the embryonic organs at the mature stage of development

    PSEN1 Mutant iPSC-Derived Model Reveals Severe Astrocyte Pathology in Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is a common neurodegenerative disorder and the leading cause of cognitive impairment. Due to insufficient understanding of the disease mechanisms, there are no efficient therapies for AD. Most studies have focused on neuronal cells, but astrocytes have also been suggested to contribute to AD pathology. We describe here the generation of functional astrocytes from induced pluripotent stem cells (iPSCs) derived from AD patients with PSEN1 Delta E9 mutation, as well as healthy and gene-corrected isogenic controls. AD astrocytes manifest hallmarks of disease pathology, including increased beta-amyloid production, altered cytokine release, and dysregulated Ca2+ homeostasis. Furthermore, due to altered metabolism, AD astrocytes show increased oxidative stress and reduced lactate secretion, as well as compromised neuronal supportive function, as evidenced by altering Ca2+ transients in healthy neurons. Our results reveal an important role for astrocytes in AD pathology and highlight the strength of iPSC-derived models for brain diseases

    ANK, a Host Cytoplasmic Receptor for the Tobacco mosaic virus Cell-to-Cell Movement Protein, Facilitates Intercellular Transport through Plasmodesmata

    Get PDF
    Plasmodesma (PD) is a channel structure that spans the cell wall and provides symplastic connection between adjacent cells. Various macromolecules are known to be transported through PD in a highly regulated manner, and plant viruses utilize their movement proteins (MPs) to gate the PD to spread cell-to-cell. The mechanism by which MP modifies PD to enable intercelluar traffic remains obscure, due to the lack of knowledge about the host factors that mediate the process. Here, we describe the functional interaction between Tobacco mosaic virus (TMV) MP and a plant factor, an ankyrin repeat containing protein (ANK), during the viral cell-to-cell movement. We utilized a reverse genetics approach to gain insight into the possible involvement of ANK in viral movement. To this end, ANK overexpressor and suppressor lines were generated, and the movement of MP was tested. MP movement was facilitated in the ANK-overexpressing plants, and reduced in the ANK-suppressing plants, demonstrating that ANK is a host factor that facilitates MP cell-to-cell movement. Also, the TMV local infection was largely delayed in the ANK-suppressing lines, while enhanced in the ANK-overexpressing lines, showing that ANK is crucially involved in the infection process. Importantly, MP interacted with ANK at PD. Finally, simultaneous expression of MP and ANK markedly decreased the PD levels of callose, β-1,3-glucan, which is known to act as a molecular sphincter for PD. Thus, the MP-ANK interaction results in the downregulation of callose and increased cell-to-cell movement of the viral protein. These findings suggest that ANK represents a host cellular receptor exploited by MP to aid viral movement by gating PD through relaxation of their callose sphincters

    Stem cells in ectodermal development

    Get PDF
    Tissue-specific stem cells sustain organs for a lifetime through self-renewal and generating differentiated progeny. Although tissue stem cells are established during organogenesis, the precise origin of most adult stem cells in the developing embryo is unclear. Mammalian skin is one of the best-studied epithelial systems containing stem cells to date, however the origin of most of the stem cell populations found in the adult epidermis is unknown. Here, we try to recapitulate the emergence and genesis of an ectodermal stem cell during development until the formation of an adult skin. We ask whether skin stem cells share key transcriptional regulators with their embryonic counterparts and discuss whether embryonic-like stem cells may persist through to adulthood in vivo

    Association between funding source, methodological quality and research outcomes in randomized controlled trials of synbiotics, probiotics and prebiotics added to infant formula: A Systematic Review

    Get PDF

    Role of Basal Ganglia Circuits in Resisting Interference by Distracters: A swLORETA Study

    Get PDF
    BACKGROUND: The selection of task-relevant information requires both the focalization of attention on the task and resistance to interference from irrelevant stimuli. Both mechanisms rely on a dorsal frontoparietal network, while focalization additionally involves a ventral frontoparietal network. The role of subcortical structures in attention is less clear, despite the fact that the striatum interacts significantly with the frontal cortex via frontostriatal loops. One means of investigating the basal ganglia's contributions to attention is to examine the features of P300 components (i.e. amplitude, latency, and generators) in patients with basal ganglia damage (such as in Parkinson's disease (PD), in which attention is often impaired). Three-stimulus oddball paradigms can be used to study distracter-elicited and target-elicited P300 subcomponents. METHODOLOGY/PRINCIPAL FINDINGS: In order to compare distracter- and target-elicited P300 components, high-density (128-channel) electroencephalograms were recorded during a three-stimulus visual oddball paradigm in 15 patients with early PD and 15 matched healthy controls. For each subject, the P300 sources were localized using standardized weighted low-resolution electromagnetic tomography (swLORETA). Comparative analyses (one-sample and two-sample t-tests) were performed using SPM5® software. The swLORETA analyses showed that PD patients displayed fewer dorsolateral prefrontal (DLPF) distracter-P300 generators but no significant differences in target-elicited P300 sources; this suggests dysfunction of the DLPF cortex when the executive frontostriatal loop is disrupted by basal ganglia damage. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the cortical attention frontoparietal networks (mainly the dorsal one) are modulated by the basal ganglia. Disruption of this network in PD impairs resistance to distracters, which results in attention disorders

    The Trichoptera barcode initiative: a strategy for generating a species-level Tree of Life

    Get PDF
    DNA barcoding was intended as a means to provide species-level identifications through associating DNA sequences from unknown specimens to those from curated reference specimens. Although barcodes were not designed for phylogenetics, they can be beneficial to the completion of the Tree of Life. The barcode database for Trichoptera is relatively comprehensive, with data from every family, approximately two-thirds of the genera, and one-third of the described species. Most Trichoptera, as with most of life’s species, have never been subjected to any formal phylogenetic analysis. Here, we present a phylogeny with over 16 000 unique haplotypes as a working hypothesis that can be updated as our estimates improve. We suggest a strategy of implementing constrained tree searches, which allow larger datasets to dictate the backbone phylogeny, while the barcode data fill out the tips of the tree. We also discuss how this phylogeny could be used to focus taxonomic attention on ambiguous species boundaries and hidden biodiversity. We suggest that systematists continue to differentiate between ‘Barcode Index Numbers’ (BINs) and ‘species’ that have been formally described. Each has utility, but they are not synonyms. We highlight examples of integrative taxonomy, using both barcodes and morphology for species description. This article is part of the themed issue ‘From DNA barcodes to biomes’
    corecore