639 research outputs found

    Validation of Subjective Well-Being Measures Using Item Response Theory

    Get PDF
    Background: Subjective well-being refers to the extent to which a person believes or feels that her life is going well. It is considered as one of the best available proxies for a broader, more canonical form of well-being. For over 30 years, one important distinction in the conceptualization of subjective well-being is the contrast between more affective evaluations of biological emotional reactions and more cognitive evaluations of one's life in relation to a psychologically self-imposed ideal. More recently, researchers have suggested the addition of harmony in life, comprising behavioral evaluations of how one is doing in a social context. Since measures used to assess subjective well-being are self-reports, often validated only using Classical Test Theory, our aim was to focus on the psychometric properties of the measures using Item Response Theory.Method: A total of 1000 participants responded to the Positive Affect Negative Affect Schedule. At random, half of the participants answered to the Satisfaction with Life Scale or to the Harmony in life Scale. First, we evaluate and provide enough evidence of unidimensionality for each scale. Next, we conducted graded response models to validate the psychometric properties of the subjective well-being scales.Results: All scales showed varied frequency item distribution, high discrimination values (Alphas), and had different difficulty parameters (Beta) on each response options. For example, we identified items that respondents found difficult to endorse at the highest/lowest point of the scales (e.g., "Proud" for positive affect; item 5, "If I could live my life over, I would change almost nothing," for life satisfaction; and item 3, "I am in harmony," for harmony in life). In addition, all scales could cover a good portion of the range of subjective well-being (Theta): -2.50 to 2.30 for positive affect, -1.00 to 3.50 for negative affect, -2.40 to 2.50 for life satisfaction, and -2.40 to 2.50 for harmony in life. Importantly, for all scales, there were weak reliability for respondents with extreme latent scores of subjective well-being.Conclusion: The affective component, especially low levels of negative affect, were less accurately measured, while both the cognitive and social component were covered to an equal degree. There was less reliability for respondents with extreme latent scores of subjective well-being. Thus, to improve reliability at the level of the scale, at the item level and at the level of the response scale for each item, we point out specific items that need to be modified or added. Moreover, the data presented here can be used as normative data for each of the subjective well-being constructs.</div

    A Triple Protostar System Formed via Fragmentation of a Gravitationally Unstable Disk

    Get PDF
    Binary and multiple star systems are a frequent outcome of the star formation process, and as a result, almost half of all sun-like stars have at least one companion star. Theoretical studies indicate that there are two main pathways that can operate concurrently to form binary/multiple star systems: large scale fragmentation of turbulent gas cores and filaments or smaller scale fragmentation of a massive protostellar disk due to gravitational instability. Observational evidence for turbulent fragmentation on scales of >>1000~AU has recently emerged. Previous evidence for disk fragmentation was limited to inferences based on the separations of more-evolved pre-main sequence and protostellar multiple systems. The triple protostar system L1448 IRS3B is an ideal candidate to search for evidence of disk fragmentation. L1448 IRS3B is in an early phase of the star formation process, likely less than 150,000 years in age, and all protostars in the system are separated by <<200~AU. Here we report observations of dust and molecular gas emission that reveal a disk with spiral structure surrounding the three protostars. Two protostars near the center of the disk are separated by 61 AU, and a tertiary protostar is coincident with a spiral arm in the outer disk at a 183 AU separation. The inferred mass of the central pair of protostellar objects is \sim1 Msun_{sun}, while the disk surrounding the three protostars has a total mass of \sim0.30 M_{\sun}. The tertiary protostar itself has a minimum mass of \sim0.085 Msun_{sun}. We demonstrate that the disk around L1448 IRS3B appears susceptible to disk fragmentation at radii between 150~AU and 320~AU, overlapping with the location of the tertiary protostar. This is consistent with models for a protostellar disk that has recently undergone gravitational instability, spawning one or two companion stars.Comment: Published in Nature on Oct. 27th. 24 pages, 8 figure

    Acquired craniomeningocele in an infant with craniosynostosis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Craniosynostosis can affect the skull in various ways. The most common forms are abnormal skull shape and beaten copper pattern, while Lückenschädel (or lacunar skull) is one of the least common forms.</p> <p>Case presentation</p> <p>We report the case of a 3-month-old Caucasian boy with multiple suture craniosynostosis and with acquired craniomeningocele presenting as a bulging mass in the lateral occipital area.</p> <p>Conclusion</p> <p>To the best of our knowledge, this is the first report of a patient with multiple suture craniosynostosis and acquired craniomeningocele.</p

    Hydraulic & Design Parameters in Full-Scale Constructed Wetland & Treatment Units: Six Case Studies

    Get PDF
    The efficiency of pond and constructed wetland (CW) treatment systems, is influenced by the internal hydrodynamics and mixing interactions between water and aquatic vegetation. In order to contribute to current knowledge of how emergent real vegetation affects solute mixing, and on what the shape and size effects are on the mixing characteristics, an understanding and quantification of those physical processes and interactions was evaluated. This paper presents results from tracer tests conducted during 2015-2016 in six full-scale systems in the UK under different flow regimes, operational depths, shapes and sizes, and in-/outlet configurations. The aim is to quantify the hydraulic performance and mixing characteristics of the treatment units, and to investigate the effect of size and shape on the mixing processes. Relative comparison of outlet configuration, inflow conditions, and internal features between the six different treatment units showed variations in residence times of up to a factor of 3. A key outcome of this study, demonstrated that the width is a more important dimension for the efficiency of the unit compared to the depth. Results underlined the importance of investigating hydrodynamics and physics of flow in full-size units to enhance treatment efficiency and predictions of water quality models

    A putative relay circuit providing low-threshold mechanoreceptive input to lamina I projection neurons via vertical cells in lamina II of the rat dorsal horn

    Get PDF
    Background: Lamina I projection neurons respond to painful stimuli, and some are also activated by touch or hair movement. Neuropathic pain resulting from peripheral nerve damage is often associated with tactile allodynia (touch-evoked pain), and this may result from increased responsiveness of lamina I projection neurons to non-noxious mechanical stimuli. It is thought that polysynaptic pathways involving excitatory interneurons can transmit tactile inputs to lamina I projection neurons, but that these are normally suppressed by inhibitory interneurons. Vertical cells in lamina II provide a potential route through which tactile stimuli can activate lamina I projection neurons, since their dendrites extend into the region where tactile afferents terminate, while their axons can innervate the projection cells. The aim of this study was to determine whether vertical cell dendrites were contacted by the central terminals of low-threshold mechanoreceptive primary afferents. Results: We initially demonstrated contacts between dendritic spines of vertical cells that had been recorded in spinal cord slices and axonal boutons containing the vesicular glutamate transporter 1 (VGLUT1), which is expressed by myelinated low-threshold mechanoreceptive afferents. To confirm that the VGLUT1 boutons included primary afferents, we then examined vertical cells recorded in rats that had received injections of cholera toxin B subunit (CTb) into the sciatic nerve. We found that over half of the VGLUT1 boutons contacting the vertical cells were CTb-immunoreactive, indicating that they were of primary afferent origin. Conclusions: These results show that vertical cell dendritic spines are frequently contacted by the central terminals of myelinated low-threshold mechanoreceptive afferents. Since dendritic spines are associated with excitatory synapses, it is likely that most of these contacts were synaptic. Vertical cells in lamina II are therefore a potential route through which tactile afferents can activate lamina I projection neurons, and this pathway could play a role in tactile allodynia

    Preferential attentional engagement drives attentional bias to snakes in Japanese macaques (Macaca fuscata) and humans (Homo sapiens)

    Get PDF
    © 2018, The Author(s). In humans, attentional biases have been shown to negative (dangerous animals, physical threat) and positive (high caloric food, alcohol) stimuli. However, it is not clear whether these attentional biases reflect on stimulus driven, bottom up, or goal driven, top down, attentional processes. Here we show that, like humans, Japanese macaques show an attentional bias to snakes in a dot probe task (Experiment 1). Moreover, this attentional bias reflects on bottom up driven, preferential engagement of attention by snake images (Experiment 2a), a finding that was replicated in a study that used the same methodology in humans (Experiment 2b). These results are consistent with the notion that attentional bias to snakes reflects on an evolutionarily old, stimulus driven threat detection mechanism which is found in both species

    Maturation of the angiotensin II cardiovascular response in the embryonic White Leghorn chicken (Gallus gallus)

    Get PDF
    Angiotensin II (Ang II) is an important regulator of cardiovascular function in adult vertebrates. Although its role in regulating the adult system has been extensively investigated, the cardiovascular response to Ang II in embryonic vertebrates is relatively unknown. We investigated the potential of Ang II as a regulator of cardiovascular function in embryonic chickens, which lack central nervous system control of cardiovascular function throughout the majority of incubation. The cardiovascular response to Ang II in embryonic chickens was investigated over the final 50% of their development. Ang II produced a dose-dependent increase in arterial pressure on each day of development studied, and the response increased in intensity as development progressed. The Ang II type-1 receptor nonspecific competitive peptide antagonist [Sar1 ile8] Ang II blocked the cardiovascular response to subsequent injections of Ang II on day 21 only. The embryonic pressure response to Ang II (hypertension only) differed from that of adult chickens, in which initial hypotension is followed by hypertension. The constant level of gene expression for the Ang II receptor, in conjunction with an increasing pressure response to the peptide, suggests that two Ang II receptor subtypes are present during chicken development. Collectively, the data indicate that Ang II plays an important role in the cardiovascular development of chickens; however, its role in maintaining basal function requires further study
    corecore