1,248 research outputs found

    Generalized, switch-like competitive heterodimerization networks

    Get PDF
    High-dimensional switches have been proposed as a way to model cellular differentiation, particularly in the context of basic Helix-Loop-Helix (bHLH) competitive heterodimerization networks. A previous study derived a simple rule showing how many elements can be co-expressed, depending on the rate of competition within the network. A limitation to that rule, however, is that many biochemical parameters were considered to be identical. Here, we derive a generalized rule. This in turns allows one to study more ways in which these networks could be regulated, linking intrinsic cellular differentiation determinants to extra-cellular cues

    Coupling dynamics of 2D Notch-Delta signalling

    Get PDF
    Understanding pattern formation driven by cell–cell interactions has been a significant theme in cellular biology for many years. In particular, due to their implications within many biological contexts, lateral-inhibition mechanisms present in the Notch-Delta signalling pathway led to an extensive discussion between biologists and mathematicians. Deterministic and stochastic models have been developed as a consequence of this discussion, some of which address long-range signalling by considering cell protrusions reaching non-neighbouring cells. The dynamics of such signalling systems reveal intricate properties of the coupling terms involved in these models. In this work, we investigate the advantages and drawbacks of a single-parameter long-range signalling model across diverse scenarios. By employing linear and multi-scale analyses, we discover that pattern selection is not only partially explained but also depends on nonlinear effects that extend beyond the scope of these analytical techniques

    The CaVβ Subunit Protects the I-II Loop of the Voltage-gated Calcium Channel CaV2.2 from Proteasomal Degradation but Not Oligoubiquitination.

    Get PDF
    CaVβ subunits interact with the voltage-gated calcium channel CaV2.2 on a site in the intracellular loop between domains I and II (the I-II loop). This interaction influences the biophysical properties of the channel and leads to an increase in its trafficking to the plasma membrane. We have shown previously that a mutant CaV2.2 channel that is unable to bind CaVβ subunits (CaV2.2 W391A) was rapidly degraded (Waithe, D., Ferron, L., Page, K. M., Chaggar, K., and Dolphin, A. C. (2011) J. Biol. Chem. 286, 9598-9611). Here we show that, in the absence of CaVβ subunits, a construct consisting of the I-II loop of CaV2.2 was directly ubiquitinated and degraded by the proteasome system. Ubiquitination could be prevented by mutation of all 12 lysine residues in the I-II loop to arginines. Including a palmitoylation motif at the N terminus of CaV2.2 I-II loop was insufficient to target it to the plasma membrane in the absence of CaVβ subunits even when proteasomal degradation was inhibited with MG132 or ubiquitination was prevented by the lysine-to-arginine mutations. In the presence of CaVβ subunit, the palmitoylated CaV2.2 I-II loop was protected from degradation, although oligoubiquitination could still occur, and was efficiently trafficked to the plasma membrane. We propose that targeting to the plasma membrane requires a conformational change in the I-II loop that is induced by binding of the CaVβ subunit

    Oscillations in well-mixed, deterministic feedback systems: beyond ring oscillators

    Get PDF
    A ring oscillator is a system in which one species regulates the next, which regulates the next and so on until the last species regulates the first. In addition, the number of the regulations which are negative, and so result in a reduction in the regulated species, is odd, making the overall feedback in the loop negative. In ring oscillators, the probability of oscillations is maximised if the degradation rates of the species are equal. When there is more than one loop in the regulatory network, the dynamics can be more complicated. Here, a systematic way of organising the characteristic equation of ODE models of regulatory networks is provided. This facilitates the identification of Hopf bifurcations. It is shown that the probability of oscillations in non-ring systems is maximised for unequal degradation rates. For example, when there is a ring and a second ring employing a subset of the genes in the first ring, then the probability of oscillations is maximised when the species in the sub-ring degrade more slowly than those outside, for a negative feedback subring. When the sub-ring forms a positive feedback loop, the optimal degradation rates are larger for the species in the sub-ring, provided the positive feedback is not too strong. By contrast, optimal degradation rates are smaller for the species in the sub-ring, when the positive feedback is very strong. Adding a positive feedback loop to a repressilator increases the probability of oscillations, provided the positive feedback is not too strong, whereas adding a negative feedback loop decreases the probability of oscillations. The work is illustrated with numerical simulations of example systems: an autoregulatory gene model in which transcription is downregulated by the protein dimer and three-species and four-species gene regulatory network examples

    The ducky^{2J} Mutation in Cacna2d2 Results in Reduced Spontaneous Purkinje Cell Activity and Altered Gene Expression

    Get PDF
    The mouse mutant ducky and its allele ducky^{2J} represent a model for absence epilepsy characterized by spike-wave seizures and cerebellar ataxia. These mice have mutations in Cacna2d2, which encodes the α₂δ-2 calcium channel subunit. Of relevance to the ataxic phenotype, α₂δ-2 mRNA is strongly expressed in cerebellar Purkinje cells (PCs). The Cacna2d2du2J mutation results in a 2 bp deletion in the coding region and a complete loss of α₂δ-2 protein. Here we show that du^{2J}/du^{2J} mice have a 30% reduction in somatic calcium current and a marked fall in the spontaneous PC firing rate at 22°C, accompanied by a decrease in firing regularity, which is not affected by blocking synaptic input to PCs. At 34°C, du^{2J}/du^{2J} PCs show no spontaneous intrinsic activity. DU^{2J}/du^{2J} mice also have alterations in the cerebellar expression of several genes related to PC function. At postnatal day 21, there is an elevation of tyrosine hydroxylase mRNA and a reduction in tenascin-C gene expression. Although du^{2J}/+ mice have a marked reduction in α₂δ-2 protein, they show no fall in PC somatic calcium currents or increase in cerebellar tryrosine hydroxylase gene expression. However, du^{2J}/+ PCs do exhibit a significant reduction in firing rate, correlating with the reduction in α₂δ-2. A hypothesis for future study is that effects on gene expression occur as a result of a reduction in somatic calcium currents, whereas effects on PC firing occur as a long-term result of loss of α₂δ-2 and/or a reduction in calcium currents and calcium-dependent processes in regions other than the soma

    Evolution of cooperation in an epithelium

    Get PDF

    Degradation rate uniformity determines success of oscillations in repressive feedback regulatory networks

    Get PDF
    Ring oscillators are biochemical circuits consisting of a ring of interactions capable of sustained oscillations. The nonlinear interactions between genes hinder the analytical insight into their function, usually requiring computational exploration. Here, we show that, despite the apparent complexity, the stability of the unique steady state in an incoherent feedback ring depends only on the degradation rates and a single parameter summarizing the feedback of the circuit. Concretely, we show that the range of regulatory parameters that yield oscillatory behaviour is maximized when the degradation rates are equal. Strikingly, this result holds independently of the regulatory functions used or number of genes. We also derive properties of the oscillations as a function of the degradation rates and number of nodes forming the ring. Finally, we explore the role of mRNA dynamics by applying the generic results to the specific case with two naturally different degradation timescales

    A Ca(V)2.1 N-terminal fragment relieves the dominant-negative inhibition by an Episodic ataxia 2 mutant

    Get PDF
    Episodic ataxia 2 (EA2) is an autosomal dominant disorder caused by mutations in the gene CACNA1A that encodes the pore-forming CaV2.1 calcium channel subunit. The majority of EA2 mutations reported so far are nonsense or deletion/insertion mutations predicted to form truncated proteins. Heterologous expression of wild-type CaV2.1, together with truncated constructs that mimic EA2 mutants, significantly suppressed wild-type calcium channel function, indicating that the truncated protein produces a dominant-negative effect (Jouvenceau et al., 2001; Page et al., 2004). A similar finding has been shown for CaV2.2 (Raghib et al., 2001). We show here that a highly conserved sequence in the cytoplasmic N-terminus is involved in this process, for both CaV2.1 and CaV2.2 channels. Additionally, we were able to interfere with the suppressive effect of an EA2 construct by mutating key N-terminal residues within it. We postulate that the N-terminus of the truncated channel plays an essential part in its interaction with the full-length CaV2.1, which prevents the correct folding of the wild-type channel. In agreement with this, we were able to disrupt the interaction between EA2 and the full length channel by co-expressing a free N-terminal peptide

    "I've made this my lifestyle now": a prospective qualitative study of motivation for lifestyle change among people with newly diagnosed type two diabetes mellitus

    Get PDF
    This is the final published version. Available from BMC via the DOI in this record.The datasets generated and/or analysed during the current study are not publicly available due to the level of personal information that is contained in the qualitative transcripts.Background: Diagnosis with Type 2 Diabetes is an opportunity for individuals to change their physical activity and dietary behaviours. Diabetes treatment guidelines recommend theory-based, patient-centred care and advocate the provision of support for patient motivation but the motivational experiences of people newly diagnosed with diabetes have not been well studied. Framed in self-determination theory, this study aimed to qualitatively explore how this patient group articulate and experience different types of motivation when attempting lifestyle change. Methods: A secondary analysis of semi-structured interview data collected with 30 (n female = 18, n male = 12) adults who had been newly diagnosed with type two diabetes and were participants in the Early ACTID trial was undertaken. Deductive directed content analysis was performed using NVivo V10 and researcher triangulation to identify and describe patient experiences and narratives that reflected the motivation types outlined in selfdetermination theory and if/how these changed over time. Results: The findings revealed the diversity in motivation quality both between and within individuals over time and that patients with newly-diagnosed diabetes have multifaceted often competing motivations for lifestyle behaviour change. Applying self-determination theory, we identified that many participants reported relatively dominant controlled motivation to comply with lifestyle recommendations, avoid their non-compliance being “found out” or supress guilt following lapses in behaviour change attempts. Such narratives were accompanied by experiences of frustrating slow behaviour change progress. More autonomous motivation was expressed as something often achieved over time and reflected goals to improve health, quality of life or family time. Motivational internalisation was evident and some participants had integrated their behaviour change to a new way of life which they found resilient to common barriers. Conclusions: Motivation for lifestyle change following diagnosis with type two diabetes is complex and can be relatively low in self-determination. To achieve the patient empowerment aspirations of current national health care plans, intervention developers, and clinicians would do well to consider the quality not just quantity of their patients’ motivation.National Institute for Health Research (NIHR
    corecore