
 on May 31, 2018http://rsif.royalsocietypublishing.org/Downloaded from brought to you by COREView metadata, citation and similar papers at core.ac.uk

Discovery
rsif.royalsocietypublishing.org
Research
Cite this article: Page KM, Perez-Carrasco R.

2018 Degradation rate uniformity determines

success of oscillations in repressive feedback

regulatory networks. J. R. Soc. Interface 15:

20180157.

http://dx.doi.org/10.1098/rsif.2018.0157
Received: 6 March 2018

Accepted: 13 April 2018
Subject Category:
Life Sciences – Mathematics interface

Subject Areas:
systems biology, biomathematics, synthetic

biology

Keywords:
oscillations, repressilator, degradation rates,

dynamical systems, gene regulatory networks
Authors for correspondence:
Karen M. Page

e-mail: kpage@math.ucl.ac.uk

Ruben Perez-Carrasco

e-mail: r.carrasco@ucl.ac.uk
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.4079975.

& 2018 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Degradation rate uniformity determines
success of oscillations in repressive
feedback regulatory networks
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Ring oscillators are biochemical circuits consisting of a ring of interactions

capable of sustained oscillations. The nonlinear interactions between genes

hinder the analytical insight into their function, usually requiring compu-

tational exploration. Here, we show that, despite the apparent complexity, the

stability of the unique steady state in an incoherent feedback ring depends

only on the degradation rates and a single parameter summarizing the feedback

of the circuit. Concretely, we show that the range of regulatory parameters that

yield oscillatory behaviour is maximized when the degradation rates are equal.

Strikingly, this result holds independently of the regulatory functions used or

number of genes. We also derive properties of the oscillations as a function of

the degradation rates and number of nodes forming the ring. Finally, we explore

the role of mRNA dynamics by applying the generic results to the specific case

with two naturally different degradation timescales.

provided by UCL 
1. Introduction
Genetic regulatory networks (GRNs), consisting of the interactions between a set

of genes, are core to the regulation of the temporal genetic expression profiles

required for various cellular processes, ranging from cell fate determination

during embryogenesis to cellular homesotasis [1–6]. GRNs are capable of

many dynamical functions, including oscillatory gene expression [7], as has

been observed in somitogenesis [8], circadian clocks [9], the activity of the p53

tumour suppressor [10,11] or the nuclear factor kB localization [12].

Owing to their range of utilities, different oscillatory gene regulatory circuits

have been synthetically engineered [13]. In particular, a lot of attention has been

focused on the engineering of ring oscillators consisting of a set of genes

interacting with each other sequentially and forming a repressive feedback

loop. This work was initiated by the synthesis of the three-gene repressilator

[14], that has been further refined to improve its oscillation properties

(e.g. [15,16]). Consequently, the theoretical and numerical analysis of the work-

ing of ring oscillators has also received substantial attention. Such work was

pioneered by Fraser & Tiwari [17] who performed numerical simulations.

Subsequent analysis showed that for sufficiently strong repression, oscillations

arise due to a Hopf bifurcation, relating the genetic oscillatory behaviour with

dynamical systems theory [18], which has led to many different studies delving

into the dynamical properties of the oscillations (e.g. [19–23])

These analytical and numerical studies of biochemical circuits require

insight into a set of simultaneous nonlinear feedback interactions between mul-

tiple genes usually analysed as a set of ordinary differential equations (ODEs).

Determining the role of different parameters in the solutions to these equations

poses enormous analytical complexity that hinders quantitative studies. For this

reason, computational and analytical studies are often reduced to tackling

relatively small networks, and, even in such cases, to a reduced parameter set

or certain simplified regulatory functions. This can constrain the range of
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Figure 1. Oscillatory behaviour of the repressilator. (a) Schematic of the repressilator. (b) Bifurcation diagram schematic shows how the oscillations appear and
disappear through a Hopf bifurcation depending on the magnitude A that summarizes the negative feedback strength of the circuit. (c) Degradation rate relationship
of repressilator networks showing oscillations from a random screening (squares and circles). Different symbols stand for the screening of the repressilator (blue
circles), and the repression ring with only one repression and two activations (green squares). Random repressilator networks were generated by sampling random
parametrizations of fi and sampling relative degradation rates covering the whole square plotted (d2/d1 and d3/d1 between [1022, 103], d1 ¼ 1 in all simulations);
as expected by the analysis, all the successful oscillators concentrate in the zone with similar degradation rates. Results are compared with the dependence of Ã with
degradation rates from equation (2.5) (brown shading). Random interaction functions were generated using the thermodynamic function fi(x) ¼ ai(1 þ rR

i (1 þ x/ki)
h)21

for the repressions and fi(x) ¼ ai(1 þ rA
i [(1 þ x/ki)/(1 þ lix/ki)]

h)21 for the activations with h ¼ 3. Random parameters were sampled logarithmically from the
intervals ki : [1029, 1025], ai : [1024, 104], rR

i : [1024, 104], rA
i : [103, 1011], li : [10, 105].
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applications of the results found [24]. Even in the case of the

repressilator, the dynamical complexity can be huge [25] and

restrictive assumptions within the quantitative model again

become unavoidable. This highlights the necessity to develop

tools capable of understanding the dynamical properties of

the system independently of the regulatory functions used.

A useful assumption, present in the vast majority of

studies, is that the degradation rates of proteins are identical

for different genes. However, due to the high span of protein

structures and mechanisms controlling degradation rates,

such as ubiquitination [26,27], the turnover rate can range

orders of magnitude in the proteome of a single system

[28,29]. As oscillations in a network are generated by an

ongoing imbalance between the production and degradation

of the different species, it is expected that degradation rates

play a determinant role in the behaviour of oscillatory

circuits. Particularly, simulations of a repressilator model

showed that oscillations are favoured for comparable values

of the degradation of the protein and mRNA [14], and,

more generally, a certain level of symmetry around the ring

[30]. Nevertheless, there is no analytical study that gives

insight into the role of degradation rates for general ring

oscillators independent of the regulatory functions used.

To gain insight into the role of degradation rates in oscil-

latory networks, dynamical systems theory and bifurcation

theory have proved to be essential tools. These allow us to

categorize different possible dynamical responses of oscil-

latory networks [7,18,31,32]. Using bifurcation theory, we

aim to obtain information on the role of degradation rates

in oscillatory networks, making these results as general as

possible and using minimal details of the regulatory func-

tions. Specifically, we show how relevant information on
the interactions between different genes can be captured

with a single parameter. We show how this parameter

controls the appearance of oscillations through a Hopf

bifurcation. First, we develop our methodology for the repres-

silator, expanding the theory in the following sections to

negative feedback ring oscillators with an arbitrary number

of species. Finally, we study the case in which the species

are categorized as mRNAs and proteins, which have distinct

degradation rates, giving insight into the role of mRNA

dynamics in the performance of ring oscillators.
2. Results
2.1. Three-gene repressilator
The classic general form of the repressilator consists of three

genes repressing each other sequentially [14] (figure 1a). In

the simple case in which mRNA dynamics are considered

fast compared with protein dynamics, the dynamical evolution

of the system can be described as a set of ODEs

_x1 ¼ d1(f1(x3)� x1),

_x2 ¼ d2(f2(x1)� x2)

and _x3 ¼ d3(f3(x2)� x3),

where f1, f2 and f3 describe the repressive interactions between

genes and are therefore decreasing, positive functions. fi can be

thought of as the maximal expression level of gene i multiplied

by the probability that its repressor is inactive. At any given

steady state (x*
1, x*

2, x*
3) given by _x1 ¼ _x2 ¼ _x3 ¼ 0, the repressi-

lator follows the relationship x*
3 ¼ f3( f2( f1(x*

3))) ; F(x*
3), where

the function F captures the overall negative feedback. As F(x)

is a decreasing, positive function, there is a unique possible

http://rsif.royalsocietypublishing.org/
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value of x*
3, which yields unique values x*

1 ¼ f1(x*
3) and x*

2 ¼

f2(x*
1). The stability of the protein levels dictated by this

steady state, can be computed through the eigenvalues of its

Jacobian matrix

J ¼
�d1 0 d1f 01(x�3)

d2f 02(x�1) �d2 0
0 d3f 03(x�2) �d3

0
@

1
A: (2:1)

These eigenvalues l satisfy the characteristic equation

(lþ d1)(lþ d2)(lþ d3)þ Ad1d2d3 ¼ 0, (2:2)

where A;2f 01(x*3)f 02(x*1)f 03(x*2) ¼2F0(x*3) is the modulus of the

slope of the composite repression function at the steady

state. Interestingly, the parameter A contains all the details

of the interactions of the network necessary to solve the

characteristic equation (2.2). This means that the eigenvalues

of the characteristic equation and so the stability of the steady

protein levels will depend only on A and on the degradation

rates. This allows us to perform the stability analysis without

any further information on the explicit form of the repressive

interactions. Concretely, since F(x) is a monotonically

decreasing function (A . 0) the product of the eigenvalues

of J will always be negative,

l1l2l3 ¼ det J ¼ �d1d2d3(1þ A) < 0: (2:3)

Therefore, the repressive ring forbids any eigenvalue to be

zero. As a result, a change in stability of the steady state

can only occur through a Hopf bifurcation, in which a pair

of complex conjugate eigenvalues crosses the imaginary

axis. We write this pair ~l2 ¼ �ia and ~l3 ¼ �ia, where a is

the angular velocity of the sustained oscillations that appear

at the Hopf bifurcation. Following equation (2.3), the other

eigenvalue l1 must be real and negative, everywhere, and

in particular at the Hopf bifurcation (~l1 < 0).

Introducing the purely imaginary eigenvalues ~l2 and l̃3

in the characteristic equation (2.2), expressions for a and ~A
(value of A at the bifurcation) are obtained that only

depend on the degradation rates,

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1d2 þ d2d3 þ d3d1

p
(2:4)

and

~A ¼ (d1d2 þ d2d3 þ d3d1)(d1 þ d2 þ d3)

d1d2d3
� 1: (2:5)

As the value of ~A is unique, the repressilator has a single

Hopf bifurcation with gene expression (~x1, ~x2, ~x3). Concretely,

at the lowest value of A (A ¼ 0), the eigenvalues of the Jaco-

bian are all negative (li ¼ 2di, i ¼ f1, 2, 3g), and the steady

state is stable. As there is a change in the stability of the

steady state at ~A, the steady state is stable for A , ~A and

unstable (with the appearance of a stable oscillatory orbit)

for A . ~A. Thus, the smaller the value of ~A, the easier it is

to find oscillations in the system (figure 1b). Strikingly, the

value of ~A just depends on the degradation rates (see

equation (2.5)) and is minimized when they are equal, d1 ¼

d2 ¼ d3, giving min { ~A} ; ~Am ¼ 8. Therefore, the closer the

degradation rates are to being equal, the less strict is the con-

dition on the network parameters through A in order for the

system to oscillate. This has been tested computationally by

generating random repressilator networks, showing that

knowledge of the value of ~Am derived from the degradation
rates gives a prediction of the propensity for oscillations of

the repressilator network (figure 1c).

It is interesting to note that the three-gene repressilator

analysis extends straightforwardly to the negative feedback

loop case consisting of two activations and one repression.

In this case, the composite function F is again a positive

decreasing function which is the only requirement in our

analysis, yielding exactly the same results (figure 1c).
2.2. N-component negative feedback ring
The reduced three-gene scenario considered above does not

include intermediate mRNA dynamics or other intermediate

regulatory steps. Additionally, it is not straightforward to

apply the results to repressive rings with a gene number

greater than three, such as the artificial circuits created by

Niederholtmeyer et al. [16]. To analyse these systems, we

can extend the repressilator by considering the general case

of N biochemical species as an N-dimensional monotone

cyclic feedback system [33]:

_xn ¼ dn(fn(xn�1)� xn), for n ¼ 1, . . . N, (2:6)

where x0 ; xN. To ensure that the network presents a nega-

tive feedback loop, it must contain an odd number of

repressions NR, i.e. NR of the functions fn are monotonic

decreasing positive functions. In addition there are NI ¼

N 2 NR activations, i.e. NI of the functions fn are monotonic

increasing positive functions. To extend the result to N com-

ponents, we will follow a derivation equivalent to that of the

repressilator. In this case, the steady state is located at x*N ¼

fN( fN21(. . ..f1(x*N))) ; F(x*N). As in the three-gene repressilator,

F(x) is a positive monotonically decreasing function and so

there is a single value for x*N and hence a unique steady

state x*1 ¼ f1(x*N), x*2 ¼ f2(x*1), . . ., x*N21 ¼ fN21(x*N22).

As the N-component repressive ring cannot show chaotic

behaviour (see the electronic supplementary material), when

the steady state is unstable, it will not be able to attract trajec-

tories, and orbits will converge to a limit cycle where all the

biochemical species will oscillate in time. As in the repressila-

tor, this allows us to study the oscillatory properties of the

GRN through its Jacobian J at the steady state x*

J ¼

�d1 0 . . . 0 d1f 01(x�N)
d2f 02(x�1) �d2 0 . . . 0

..

. . .
. . .

. ..
.

0 . . . 0 dNf 0N(x�N�1) �dN

0
BBB@

1
CCCA: (2:7)

The corresponding characteristic equation is given by

YN
n¼1

(lþ dn)�
YN
n¼1

dnf 0n(x�n�1) ¼ 0:

As in the three-gene case, the chain rule for differentiation

gives us �F0(x�N) ¼ �
QN

n¼1 f 0n(x�n�1) ; A . 0 and hence the

characteristic equation can be written as

YN
n¼1

1þ l

dn

� �
þ A ¼ 0: (2:8)

Therefore, as with the classic repressilator, despite all the

potential complexity in the repression functions of the net-

work, the stability of the unique steady state only depends

on the degradation rates and the parameter A, which gathers

information on the global negative feedback loop, as the mod-

ulus of the slope of the composite repression function of a gene

http://rsif.royalsocietypublishing.org/
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on itself at the steady state. The product of the eigenvalues of

J also follows the same pattern as equation (2.3),

YN
n¼1

ln ¼ det J ¼ (�1)N(1þ A)
YN
n¼1

dn=0, (2:9)

forbidding a zero eigenvalue of J, so the steady state can only

lose stability via a Hopf bifurcation (see the electronic sup-

plementary material). At A ¼ 0, the Jacobian matrix has

eigenvalues l ¼2dn for n ¼ 1, . . ., N, and is therefore a stable

node. Increasing A away from zero, oscillations arising

through a Hopf bifurcation will appear at the smallest value

A ¼ ~A at which J has a pair of imaginary eigenvalues. Letting

the pair of eigenvalues be+ia with the angular velocity a . 0

and introducing it in equation (2.9) we can again derive

relationships for a and ~A that only depend on the degradation

rates (see the electronic supplementary material),

YN
n¼1

1þ a2

d2
n

 !
¼ ~A

2
(2:10)

and

XN

n¼1

tan�1 a

dn

� �
¼ p: (2:11)

Note that in contrast with the three-gene case, there is no

closed form expression for the angular velocity a and ~A as a

function of the degradation rates comparable to equations (2.4)

and (2.5). Instead, we have the implicit equation (equation

(2.11)) that returns the value of the angular velocity a for a cer-

tain set of values dn and equation (2.10) that returns the value

of ~A, once a is known.

As in the previous section, we are interested in the degra-

dation rates for which ~A is minimized, since this will maximize

the parameter region for which there will be oscillations. For

this purpose, we can work with the arguments un ; tan21(a/dn)

varying independently in the domain [0, p/2) subject to the con-

straint that they sum top. In this representation, ~A ¼
QN

n¼1 sec un

from equation (2.10). To find its minimum value, we minimize

ln ~A subject to the implicit equation (2.11) constraint

(
PN

n¼1 un¼p) using the Lagrange multiplier m (e.g. [34]),

@ln ~A
@un

� m
@
PN

l¼1 ul

@un
¼ 0, n ¼ 1, . . . ,N:

As ln ~A ¼
PN

l¼1 ln (sec (ul)), the minimization yields

tan un ¼ m, n ¼ 1, . . . ,N: (2:12)

As un vary in the domain [0,p/2), the condition (2.12) is only

fulfilled when all un are the same (un ¼ p/N). It is straightfor-

ward to check that this stationary point is a minimum since ~A
can be made arbitrarily big by choosing u1 ! p=2. Thus,

as in the classic three-gene repressilator, the minimum value of
~A ; ~Am is achieved when all the degradation rates are equal.

For this case, an analytical expression for ~A is available from

equation (2.10),

~Am ¼ secN p

N

� �
: (2:13)

We can show that ~Am is decreasing in N, for N � 3. Therefore,

increasing N increases the range of values of A for which we

get oscillations. As N ! 1, the critical value of A tends to 1,

while when N¼ 3, the prediction ~Am ¼ 8 is recovered.

Additionally, an expression for the angular frequency

a ; am of the small oscillations that arise close to this
bifurcation point when all the degradation rates are identical

dn;d is also available,

am ¼ d tan
p

N

� �
: (2:14)

Like ~Am, the frequency am is decreasing in N showing that the

more links the feedback loop has, the slower the oscillations

will get. For N ¼ 3, the results from the first section are recov-

ered, predicting an angular frequency is d
ffiffiffi
3
p

, so that the time

period of oscillations is 2p=
ffiffiffi
3
p
� 3:62=d. In the limit N ! 1,

the transmission of information across the feedback gets infi-

nitely slow and the frequency of the oscillations tends to

0. The slowing down of the oscillations with N is also true

for the general case in which the degradation rates are not

identical. If we fix d1, d2, . . ., dN and consider introducing an

additional species xNþ1 in the cycle (keeping the number of

repressions odd), then it is clear from the implicit equation

(equation (2.11)) that the value of a which satisfies this

equation will be lowered.

On the contrary, introducing a new species does not necess-

arily reduce ~A. To evaluate the effect on ~A of adding a new link it

is interesting to note first that in the case that the degradation

rate of the new species tends to infinity (dNþ1 ! 1 in equations

(2.11) and (2.10)), the problem is reduced to the case with

N species, i.e. the new variable will be so fast that it will

always be in quasi-equilibrium with the previous species. By

contrast, introducing an arbirtrarily slowly degrading species

will completely stop the oscillations. It can be proved (see the

electronic supplementary material) that there is a range of degra-

dation rates of the new species for which the probability of

oscillations is increased. This is supported by numerical simu-

lations (figure 2a). The relative probability of oscillations does

not precisely tend to one as the degradation rate of the added

species tends to infinity, because the value of A is also changed

by the addition of the extra species; in simulations in which the

added species has fnþ1(x)¼ x, the relative probability of

oscillations tends to one as dNþ1 ! 1 (data not shown). The

simulations also demonstrate that the increase in probability of

oscillations with additional species of intermediate degradation

rate becomes weaker the more species there are.
2.3. Is the Hopf bifurcation supercritical or subcritical?
In the development of the argument, we assumed that the

Hopf bifurcation is supercritical and not subcritical, i.e. a

stable limit cycle arises at the bifurcation point. This is true

for all the networks explored numerically in this manuscript,

which use thermodynamic regulatory functions. Neverthe-

less, this is not necessarily true for any repressive functions

fi(x). Mathematically, this requires the computation of the

sign of the first Lyapunov coefficient [35] at the Hopf bifur-

cation. In the case where degradation rates and repressive

functions are the same for all species (an assumption that is

often made, e.g. [14]), progress can be made. For the three-

gene repressilator with Hill function repressions it can be

proved that the Lyapunov coefficient is negative, i.e. there

is always a supercritical bifurcation [19]. In the case of an

N-component repressive ring, the first Lyapunov coefficient

‘1 is given by (see the electronic supplementary material),

‘1 ¼
c2

2N sin (p=N)
�f 000(~x)þ f 00(~x)2[4c3 þ 4c2 � 13cþ 2]

(1þ c)(5� 4c)

" #
,

(2:15)
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Figure 2. Behaviour of N-gene oscillators. (a) Ratio of the probability of oscillations in an extended ring network with N þ 1 genes and a genetic network of N genes
for different values of the degradation rate of the N þ 1th gene. In both cases explored N ¼ 3 (blue) and N ¼ 5 (green), the degradation of the N þ 1th gene is
varied while sampling the other degradation rates from the range di ¼ [1023, 1] and keeping one random gene fixed at d ¼ 1. The other parameters and details of
the sampling are the same as in figure 1c. (b) Frequency and amplitude of oscillations as a function of the network parameter A for 1000 successfully oscillatory networks
from a random screening for different numbers of species with the same degradation rates di ¼ 1, N ¼ 3 (red), N ¼ 4 (blue) and N ¼ 5 (green). Dashed lines and
rings show the minimum critical value ~Am and angular velocity at that point am predicted by equations (2.13) and (2.14) for N ¼ 3, 4, 5. The maximal values for A in
the figure result from parameter sampling. In general Amax ¼ (max (

Q
i f 0i (x�))), which can be arbitrarily large. The repression functions are the same as in figure 1c

with parameters logarithmically sampled from the intervals ki : [1025, 1021], ai : [1024, 108], rR
i : [1024, 104], rA

i : [1021, 1011], li : [101, 105].
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where c ¼ cos(p/N ). Therefore, the sign of ‘1will depend on

the ratio f 000(~x)= f 00(~x)2 and the number of links. While the

Lyapunov coefficient is negative for the thermodynamic

regulatory functions chosen in this manuscript and for Hill

function repressions, the Lyapunov coefficient is not negative

for every possible regulatory function f. For example, a

repressive ring with f(x) ¼ 1/(1 þ (1 þ x 2 x2 þ x3)h) can

have a positive or negative coefficient depending on the

exponent h (see electronic supplementary material,

figure S1). Nevertheless, since trajectories for genetic systems

are bounded, the unstable limit cycle must coexist with a

stable limit cycle for A . Ã, returning a comparable set of

results even in the case a subcritical bifurcation occurs. In

this case, stable oscillations or evolution towards a steady

state concentration will both be possible for values of A
slightly lower than Ã.

As mentioned, the nature of the Hopf bifurcation depends

on f 000(~x)= f 00(~x)2. If it is greater than �2=3, then the Hopf

bifurcation is supercritical for all N for which it exists. If it

is less than �3=2, then the Hopf bifurcation is subcritical

for all N for which it exists. If �3=2 < f 000(~x)= f 00(~x)2 < �2=3,

then the Hopf bifurcation is supercritical for sufficiently

large N and subcritical for smaller N, assuming it exists.

2.4. Behaviour away from the Hopf bifurcation
We have shown that for values of A below the critical value

(A , ~A), the steady state is stable, and changes stability at

A ¼ ~A. But, can the stability be recovered for greater values

of A? Or in other words, is it guaranteed that the oscillations

will be stable for all values A . ~A? To answer this question,

we can count the maximum number of pairs of eigenvalues

crossing the imaginary axis as the possible solutions of the

implicit equation and also the number of pairs of eigenvalues

with positive real part when A! 1 (see the electronic sup-

plementary material). Strikingly, both magnitudes coincide,

showing that every crossing of eigenvalues takes place from

negative to positive real part, consequently the unstable
state never recovers its stability and the oscillations are

stable for every value of A . ~A.

Knowing that the system will be oscillating once A . ~A
does not give information on the period or amplitude of

the oscillations far from ~A. One possible approach to studying

the frequency of the oscillations far from ~A is to consider the

imaginary part of the eigenvalues. If we consider the system

with equal degradation rates, the characteristic equation

(equation (2.8)) corresponds to

1þ l

d

� �N

¼ �A: (2:16)

The eigenvalues are therefore given by l ¼ d(N ffiffiffiffiA
p

vk � 1) for k¼
1, . . ., N, with vk the Nth roots of 21. Thus, the eigenvalues

with largest real part are l1,l2 ¼ d[(N ffiffiffiffiA
p

cos (p=N)� 1)+
iN
ffiffiffiffi
A
p

sin (p=N)]. This confirms our result that the steady state is

unstable for all A . secn(p/N). In addition, perturbing around

the steady state, the wavemode that grows fastest has frequency

d N
ffiffiffiffi
A
p

sin (p=N). Although it is tempting to use this value as an

approximation for the oscillation frequency far from the Hopf

bifurcation, numerical simulations show that this fails to capture

the full nonlinear behaviour. Instead they reveal a different scen-

ario in which the oscillations can get slower as the value of A
grows (figure 2b). On the other hand, as expected when

moving away from a Hopf bifurcation, the oscillations gain

amplitude as A increases (figure 2b).

2.5. Applications to mRNA and protein dynamics
So far we have been considered N-component repressive

rings without taking any particular consideration of the

nature of the biochemical species. It is interesting to focus

on the case in which a negative repressive ring includes the

mRNA and protein corresponding to each gene as different

nodes of the regulatory network. In this scenario, the proteins

regulate the mRNA production of other genes, while the

mRNA of each gene is translated into the corresponding

protein, keeping the same ring topology. Note that since

http://rsif.royalsocietypublishing.org/
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protein translation always increases with the number of

mRNA molecules, the number of repressions in the network

is the same as for a network where the mRNA is not taken

into account. Thus, the same theory developed in the manu-

script applies with the difference that the number of nodes

N is doubled and two temporal scales for the degradation

of mRNA and protein are introduced, the latter being greater

than the former.

One immediate observation is that a two gene negative

feedback loop network without mRNA can never oscillate,

since the minimum value of ~Am (equation (2.13)) tends to

infinity for N ¼ 2, making it impossible to find any set of par-

ameters or regulatory functions able to make the system

oscillate (A . ~Am). The same can also be seen from the

implicit equation (equation (2.11)) where each of the two

terms in the sum will always be less than p/2 for finite posi-

tive values of a and d. By contrast, this is no longer true when

mRNA is included in the description, since in this case, N ¼ 4

and there is a finite value of ~Am ¼ 4, allowing the system to

oscillate for values of A . ~A . ~Am, even though the gene net-

work topology is the same. This explains the computational

observations of Hazimanikatis & Lee [36], in which they

study the danger of the common simplification of considering

mRNA dynamics to be so fast that they can be considered in

equilibrium. Concretely they observe that, for a two-gene

feedback loop, considering mRNA to be at equilibrium extin-

guishes the oscillatory behaviour of the network. Not only

can our analysis explain this behaviour, but it can also give

a measure of the contribution of mRNA degradation to the

oscillatory behaviour, indicating that the faster the degra-

dation of the mRNA in comparison with the protein, the

smaller will be the mRNA ‘angular’ contribution to the

implicit equation (equation (2.11)).

To understand what happens for a larger number of

genes we consider the case where there are M genes com-

posed by M mRNAs with degradation rate dmRNA and M
proteins with degradation rate dProt, forming a negative feed-

back loop of N ¼ 2M nodes in total. The critical value of A is

given by equation (2.10),

~A ¼ 1þ a2

d2
mRNA

 !M

1þ a2

d2
Prot

 !M

, (2:17)

where the value of the angular velocity a is analytically

available from the implicit equation (equation (2.11)),

tan21(a/dmRNA) þ tan21(a/dProt) ¼ p/M giving,

a ¼ �(dmRNA þ dProt)

2 tanp=M

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(dmRNA þ dProt)

2 þ 4 tan2 (p=m)dProtdmRNA

q
2 tanp=M

: (2:18)

Substituting equation (2.18) into equation (2.17), it is straight-

forward to see that the value of ~A is solely determined by the

ratio of degradation rates dmRNA/dProt, and reaches a mini-

mum of secN(p/N ), as expected, when the two degradation

rates coincide (figure 3a).

In the specific case of the two node network of [36]

(i.e. M ¼ 2), we get

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dmRNAdProt

p
(2:19)
and the critical value of A is

~A ¼ 1þ dProt

dmRNA

� �
1þ dmRNA

dProt

� �
: (2:20)

The nice simple form of equation (2.19) shows that at the

bifurcation, oscillations occur on a timescale that depends

on both mRNA and protein degradation rates and is inter-

mediate between the two timescales. Additionally, as we

have already discussed, equation (2.20) implies that ~A! 1

when dProt=dmRNA ! 0. In particular, the steep variation of

Ã with the ratio of the degradation rates makes it very diffi-

cult to find an oscillatory network when mRNA has a much

faster degradation rate than protein, even when the condition

is relaxed and the degradation rate of each of the four species

is allowed to vary independently (figure 3c,d ). We see in the

figure that the four degradation rates need to be similar in

order for oscillations to occur.

Interestingly, this strict condition does not apply to bigger

networks. The dependence of ~A on dmRNA/dProt becomes

less steep as M increases and ~A still takes a finite value of

secM(p/M) as dmRNA=dProt ! 0 (figure 3).1 Similar things can

be observed if we allow all the degradation rates to be different

and we screen numerically for sets of degradation rates that give

rise to oscillations (figure 3c,d). We see already for M ¼ 3 that

the actual values of the mRNA degradation rates are relatively

unimportant (provided they are constrained to be higher than

the protein degradation rates) and the possibility of oscillations

is almost exclusively constrained by the degradation rates of the

proteins, that are required to be similar.

As in the previous section, it is also interesting to study

the behaviour of the oscillations far from the Hopf bifurcation

when the mRNA is taken into account. As expected from the

analysis, the introduction of new species slows down the

system, yielding slower oscillations for all the values of A
(figure 3b). Additionally, as was shown in the previous sec-

tion, more species do not necessarily have an effect on the

amplitude of the oscillations, which remain the same whether

or not mRNA dynamics are considered.
3. Discussion
The results obtained in this study rely on working out prop-

erties of the eigenvalues of the system without determining

exactly their values. Concretely, we find that the eigenvalues

only depend on the values of the degradation rates and a

single parameter A that summarizes all the topology, regulat-

ory functions and specific parameters of the network. The

power of this finding is that it allowed us to delve into details

of the oscillatory behaviour that are universal for any repres-

sive ring. The main conclusion deriving from this analysis is

the requirement for identical degradation rates for all the

genes in order to optimize the parameter space that allows

oscillations. This property holds independently of how asym-

metric the different regulatory functions are. Furthermore, it

also yields a quantification of the range of heterogeneity

among the degradation rates that can still allow oscillations.

This information is valuable from the point of view of syn-

thetic biology where fine tuning of the network is required

to optimize oscillatory behaviour.

The limitations of these findings come in the indetermina-

tion of how different regulatory functions affect the actual

values of the parameter A, suggesting a natural continuation
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Figure 3. Effects of mRNA and protein degradation timescale differences. (a) Dependence of critical value of A on the ratio of the degradation rates of the protein
and mRNA for a system composed of M genes with protein degradation rate dProt and mRNA degradation rate dmRNA. (b) Frequency and amplitude as a function of
the network parameter A for 6000 successfully oscillatory networks from a random screening. The random screening was performed for the repressilator network
simulated as direct repression between three genes (red) and as a six element network (blue) taking into account separately mRNA from protein dynamics. Dashed
lines and rings show the minimum critical value ~Am and angular velocity at that point am predicted by equations (2.13) and (2.14) for N ¼ 3 and N ¼ 6. Repres-
sion functions and parameter screening were the same as in figure 2b with additional screening on the degradation rates dProt : [1023, 1] and dmRNA : [1, 103],
keeping one of the degradation rates fixed as dProt1

¼ 1. The translation of mRNA M into protein P is considered to be linear as fp(m) ¼ apm, where ap was also
logarithmically sampled (ap : [1, 108]). (c,d ) Probability density of oscillations for the two (c)) and three (d )) gene network with mRNA (M ¼ 2 and M ¼ 3) for
different sets of networks and degradation parameters. The degradation parameters of each test were sampled logarithmically from the ranges dmRNA ¼ [1, 103]
(upper quadrant) and dProt ¼ [1023, 1] (lower quadrant). Colours show the successfully oscillatory behaviour probability density of a network as a function of pairs
of dmRNA and dProt. For the case M ¼ 3, one of the species had fixed degradation rates given by dmRNA1

¼ 10 and dProt1
¼ 0.1 (white circles). The random

sampling of the other parameters of the network was the same as in figure 2b.
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of the research on the topic. Understanding how different bio-

logical parameters affect the value of A will lead to knowledge

of how these parameters affect the properties of the oscillations

of the system and how achievable is the oscillatory condition

A . ~A. Similarly, we found that the approach fails to predict

details of the oscillatory behaviour, such as frequency or ampli-

tude far from the bifurcation point. Results show that for

identical topologies, increasing A can lead to increasing or

decreasing frequency, suggesting that further knowledge

beyond A is required to address these questions.

One of the constraints of the current analysis is the

requirement for directed interactions between genes, not

allowing the direct inclusion of bidirectional interactions

such as dimerization or promoter binding that can give rise

to new bifurcations [25]. Nevertheless, in certain cases, care-

ful analysis of the timescales can allow the equations to be

rewritten preserving the sequentiality of the interactions

and keeping similar symmetries to the ones studied in the
current manuscript [37], indicating a possible extension of

the current study to more precise repressilator descriptions.

Additionally, a recent study makes similar predictions

regarding the homogeneity of the degradation rates in the

more complex AC–DC network, consisting of a repressilator

with an extra cross-repression where timescale separation is

not possible [38]. Strikingly, for this network, optimization

of the oscillatory behaviour revealed that, again, homogen-

eity of the degradation rates was required to observe

oscillations. Such results hint at the possibility of extending

our current analysis to more complex topologies.

Finally, the current study was limited to networks that

involve a negative feedback loop. Nevertheless, there is also a

body of research devoted to understanding the oscillations of

positive feedback ring GRNs [18,21]. Even though the oscillatory

orbits are unstable, they can show long-lived oscillations that

allow fast controllable transients between oscillatory and non-

oscillatory regimes [31]. The appeal of such networks also
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indicate a possible continuation of our work, seeking to under-

stand the role of degradation rate homogeneity and number of

nodes in the nature of such oscillations.
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Endnote
1In the limit as M! 1, both Ãm and the value of Ã as
dProt=dmRNA ! 0 tend to one, so the dependence on dmRNA/dProt

disappears.
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