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In our paper, ‘A theoretical framework for the regulation of Shh
morphogen-controlled gene expression’ by Cohen et al. (2014) we
formulate a mathematical model of gene regulation by morphogen
signalling that brings together empirical findings from several
sources including Balaskas et al. (2012), Oosterveen et al. (2012,
2013) and Peterson et al. (2012). We use an approach based on
statistical thermodynamic ensemble models of gene regulation and
Approximate Bayesian Computation. We argue that the
mathematical model provides a single coherent framework that
explains experimental observations and that the approach can be
applied to similar morphogen systems.
Uhde and Ericson (2016) do not dispute our mathematical model.

Instead they claim: (1) our study ‘overlooks previous experimental

work’ and we have not ‘acknowledged or discussed…conceptual
conclusions’ of the Ericson lab; and (2) our conclusions are
‘conceptually indistinguishable’ from Oosterveen et al. (2013,
2012) and Peterson et al. (2012), and our ‘major conclusions
primarily confirm published models of Shh interpretation’.

We disagree. Here, we clarify the issues that appear to have
caused these misunderstandings.

The contribution of the Ericson and McMahon laboratories to
understanding the roles and dissecting the architecture of key
patterning genes in the neural tube is indisputable. Far from
overlooking their studies, we use these explicitly as motivation for
the mathematical model and we cite the papers extensively
throughout the manuscript (we cite the Peterson study seven times
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and the Oosterveen papers nine times). We do not think readers
could fail to notice our references to these papers or easily miss our
use of their work to support the model. Moreover, as Uhde and
Ericson (2016) point out, we also reviewed and cited their work
extensively in a separate publication (Cohen et al., 2013).
Nevertheless, the description of morphogen-controlled gene

expression is the product of a large number of studies that go well
beyond the neural tube field (Briscoe and Small, 2015). The model
of gene regulation we construct contains three types of input: (1)
uniformly expressed transcription factors (TFs). The role of these in
morphogen interpretation became obvious from work on Zelda and
Stat92E in Drosophila (e.g.Kanodia et al., 2012; Nien et al., 2011).
(2) A transcriptional effector of the morphogen for which there is a
lack of correlation between binding affinity and the position of
target gene activation. This has been extensively documented for
Bicoid in the Gap gene system (Ochoa-Espinosa et al., 2005). (3) A
set of morphogen-regulated TFs that form a transcriptional network.
The Gap genes also provide a well-established example of the
importance of transcriptional network dynamics in morphogen
pattern formation (e.g. Jaeger et al., 2004; Manu et al., 2009).
Each of these elements was described in Drosophila prior to the

work of Oosterveen et al. (2012, 2013) and Peterson et al. (2012).
Furthermore, the idea that cis-regulatory modules combine multiple
inputs to ‘compute’ an output is at the heart of the gene regulatory
network framework developed by Davidson and colleagues
(reviewed in Davidson, 2010). Thus the precedents for the broad
conceptual conclusions to which Uhde and Ericson (2016) refer
arose from studies of non-vertebrate systems that predate thework of
Oosterveen et al. (2012, 2013) and Peterson et al. (2012).
Our intention by citing the non-vertebrate studies was not to

diminish the contribution of the Ericson and McMahon labs, but to
provide a broader context and the appropriate background. For
example, in the section dealing with the function of uniformly
expressed TFs we write: ‘…previous studies have demonstrated
how the levels of binding of a spatially uniform factor to target
genes in a morphogen patterning system can significantly influence
their expression profiles (Kanodia et al., 2012). In the neural tube,
the TF Sox2 has been suggested to provide a spatially uniform
activation input into neurally expressed genes (Bailey et al., 2006;
Oosterveen et al., 2012; Peterson et al., 2012)’. We believe that
these comparisons are highly relevant and emphasize the
importance of Oosterveen et al. (2012, 2013) and Peterson et al.
(2012). Taken together, the studies suggest common principles
underpin the transcriptional interpretation of morphogen signalling
in several tissues.
More importantly, the suggestion that our conclusions are

‘conceptually indistinguishable’ and that our ‘major conclusions
primarily confirm published models of Shh interpretation’ misses
the key point of our paper. Cohen et al. (2014) describe and analyse
a mathematical model. The Oosterveen and Peterson studies do not
contain mathematical models, neither does Cohen et al. (2013).
Moreover, the interpretation that Oosterveen et al. (2012) offer of
their data is not equivalent to the mathematical model in Cohen et al.
(2014).
We believe that the explanatory and predictive power of

mathematical models is of most value when firmly rooted in
experimental observations. The empirical observations we use to
construct the model are based on the studies of Oosterveen et al.
(2013, 2012), Peterson et al. (2012), among many other studies, and
we cite these papers accordingly. These observations are the basis
for the model not, as Uhde and Ericson (2016) seem to suggest, the
‘conclusions’ of the model. In our view, the analytical framework in

Cohen et al. (2014) helps to rigorously establish the relationships
between different pieces of empirical evidence and formulates a
mechanistic, predictive model of gene regulation.

Moreover, mathematical models, particularly of non-linear
dynamical systems such as transcriptional networks, often provide
insight into complex behaviours that are difficult to discern from
experiment alone. We think this is the case here. As a consequence,
there are several differences that distinguish the model proposed in
Cohen et al. (2014) from Oosterveen et al. (2012, 2013).

(1) In the Cohen et al. (2014) model there are no inherent
differences between how target genes interpret GliA and GliR
gradient. By contrast, the study by Oosterveen et al. (2012) proposes
two classes of genes: ‘local’ genes that interpret ‘the balance
between GliA and GliR’, and ‘long-range’ genes that only interpret
GliR and have more dorsally positioned boundaries. They label this
a ‘GliR gradient interpretation model’ and comment: ‘This GliR-
gradient interpretation model differs significantly from prevailing
models suggesting…that cells strictly measure the balance between
GliA and GliR’. This leads Oosterveen et al. (2012) to their
principal conclusion that the interpretation of Shh signalling
involves ‘mechanistic differences’ between the ‘local’ and ‘long
range’.

In the model proposed in Cohen et al. (2014), the expression of
both short and long-range Gli-regulated genes depend on the
concentration and strength of binding of both GliR and GliA (the
binding affinity of both is the same – parameterized by a single
value). This could be summarized as ‘genes measure the balance
between GliA and GliR’. Thus, Cohen et al. (2014) do not invoke
two classes of genes nor mechanistic differences between short and
long-range target genes.

The model proposed in Cohen et al. (2014) also reveals that
differences in GBS affinity between target genes are not necessary
to explain the observed spatial-temporal dynamics of target gene
expression. This appears at odds with the proposal of ‘mechanistic
differences’ in the transcriptional regulation of ‘local’ and ‘long-
range’ target genes (Oosterveen et al., 2012).

(2) Uhde and Ericson (2016) state that their data indicate that
‘Gli-mediated gene activation [is] a largely concentration-
independent event’. This is not the case in the mathematical
model described in Cohen et al. (2014) in which the response of
target genes is dependent on the concentrations of GliA and GliR.
The way a specific target gene responds to alterations in activator
and repressor levels depends not only on the Gli input but also its
other inputs. An important consequence of this is that changes in the
Gli binding affinity of a target gene can have opposite effects on the
range of activation of different genes. We believe that this represents
a good example of how the mathematical model helps explain the
experimental data. We make this point in our manuscript by citing
data in Oosterveen et al. (2012) and Peterson et al. (2012).

(3) As Uhde and Ericson (2016) indicate, our model describes a
‘neutral point’. However, our definition of the neutral point appears
to differ conceptually from their interpretation. In their
correspondence, Uhde and Ericson imply that the neutral point is
a specific location in the tissue between the Nkx2.2 and Olig2
boundaries. Furthermore, they suggest that genes on either side of
this point have different Gli binding affinities. In the mathematical
model this is not the case. In Cohen et al. (2014), we define the
neutral point for a gene as the point in the GliA/GliR gradient at
which altering the GBS affinity does not alter the probability of gene
expression (see eqn 5). We show how this point depends on the
concentration of GliA/GliR and the basal levels of expression of
each gene (see eqn 6 and eqn S4). Hence the neutral point is
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independent of the binding affinity for Gli TFs (parameter K) and is
not a single position in the tissue – for each target gene it depends on
the non-Gli regulatory input (eqn S4). Importantly, our analysis
indicates that the observation that changes in GBS affinity result in
opposite shifts of gene expression boundaries on either side of the
neutral point is an emergent property of the model.
We agree with Uhde and Ericson that this behaviour is evident in

the Oosterveen and Peterson experimental data, but we could not
find the idea of a ‘neutral point’ proposed in Oosterveen et al. (2012,
2013). Instead Oosterveen et al. (2012) use the data to propose
‘mechanistic differences’ between ‘local’ and ‘long-range’
interpretations of Shh signalling and that ‘Gli activators have a
noninstructive role’. In Cohen et al. (2014), we highlight and cite the
experimental evidence of the neutral point revealed by their
experimental data and show how a mathematical model suggests a
single mechanism to explain the experimental observations. We
think this represents one of the successes of the mathematical model
and it illustrates how such models provide new insight into
experimental data.
(4) Oosterveen et al. (2012) suggest that gene regulation involves

‘cooperative’ interactions between Gli and HD proteins and
between Gli and SoxB1. The model we formulate does not
contain these cooperative interactions. This does not rule out
cooperative interactions in vivo. However, these are not required in
the mathematical model.
(5) Uhde and Ericson (2016) say that we ‘incorrectly state

“…analysis of GBSs within enhancers of Shh target genes failed to
find a positive correlation between binding site affinity and range of
gene induction (Oosterveen et al., 2012; Peterson et al., 2012)” ’.
We are confused by this statement. The data reported in fig. 3A of
Oosterveen et al. (2012) and table 1 of Peterson et al. (2012) lack a
positive correlation between binding site affinity and range of gene
induction – at best there might be a weak negative correlation in the
Oosterveen data, which is not evident in the Peterson analysis (see

Fig. 1). In Oosterveen et al. (2012) two classes of genes, ‘local’ and
‘long range’ are defined, but even within each of these two classes
Oosterveen et al. (2012) conclude ‘there is no predictive correlation
between gene expression pattern and affinity score or number of
GBSs’ (p. 1009). This appears to be in line with our statement. We
note that the P19 data in Oosterveen et al. (2012) also support this
conclusion – fig. 3D in Oosterveen et al. (2012) shows no difference
between the Nkx2.2 and FoxA2 activity and the statistical
significance of the other differences is unclear.

While not a point of distinction between the conclusions of
Cohen et al. and the earlier studies, Uhde and Ericson (2016) raise
concerns about our discussion of hysteresis. The term ‘hysteresis’
was originally coined to describe the behaviour of magnetic
materials and is widely used in dynamical systems theory to indicate
that the output of a system depends not only on its current input, but
also on past inputs. We show that the mathematical model
developed in Cohen et al. (2014) displays similar hysteresis to the
simpler dynamical system described in Balaskas et al. (2012). This
is a validation of the model formulism and it links the Cohen et al.
model to the experiments performed in Balaskas et al. (2012).
Hysteresis suggests an explanation for the maintenance of gene
expression in cells in which the levels of Gli activity decrease over
time; an observation described in Balaskas et al. (2012) and recently
independently observed in the elegant quantitative approach taken
by Junker et al. (2014). This mechanism is distinct from that
proposed in Lek et al. (2010), which is why we did not cite that
work.

In summary, there are several features that distinguish the
mathematical model described in Cohen et al. (2014) from previous
interpretations. The Cohen et al. (2014) model demonstrates that
neither differences in the binding affinity of GliA and GliR, nor
differences in GBS affinity between target genes are required to
explain the patterns of gene expression. Contrary to the conclusions
of Oosterveen et al. (2012), the model in Cohen et al. (2014)

Fig. 1. Scatter plots of the predicted
binding affinities of the putative gli
binding sites (GBSs) associated
with the indicated genes as
reported in Oosterveen et al. (2012)
and Peterson et al. (2012). Data
were extracted from fig. 3A of
Oosterveen et al. (2012) and from
table 1 of Peterson et al. (2012).
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proposes that all target genes respond to the ratio of GliA and GliR
and the mathematical model does not impose mechanistic
differences between local and long-range targets. Together, the
Cohen et al. model provides a distinct mechanistic explanation for
the experimentally observed position-dependent shifts in gene
expression upon perturbations of binding site affinity.
We note that the section entitled ‘Discussion’ in Cohen et al.

(2014) was originally titled ‘Conclusion’ to signify it as a short
summary and the section entitled ‘Results’ was originally titled
‘Results and Discussion’. These headings were changed in response
to an editorial request, after acceptance, to match Development’s
house style and we regret any confusion this caused.
We are saddened that Uhde and Ericson believe we undervalue

their work. The intention of Cohen et al. (2014) was not to diminish
or undermine studies to which they and others have contributed.
Rather, we believe that accommodating the empirical data of
Oosterveen et al. (2012, 2013) and Peterson et al. (2012) in a single
theoretical framework and reconciling this with other studies in the
field emphasizes the importance and success of their work. We
think this exchange of correspondence also highlights the benefits
of mathematical models: they provide formal, precise and
transparent descriptions of ideas that are not subject to the
ambiguities or differences in interpretations of narrative accounts
or informal ‘cartoon’ models. Moreover, mathematical models
make clear predictions that can be tested experimentally and we look
forward to working with the Ericson lab and others in the field to
revise, extend or refute current models.

References
Bailey, P. J., Klos, J. M., Andersson, E., Karlen, M., Källström, M., Ponjavic, J.,
Muhr, J., Lenhard, B., Sandelin, A. and Ericson, J. (2006). A global genomic
transcriptional code associated with CNS-expressed genes. Exp. Cell Res. 312,
3108-3119.

Balaskas, N., Ribeiro, A., Panovska, J., Dessaud, E., Sasai, N., Page, K. M.,
Briscoe, J. and Ribes, V. (2012). Gene regulatory logic for reading the Sonic
Hedgehog signaling gradient in the vertebrate neural tube. Cell 148, 273-284.

Briscoe, J. and Small, S. (2015). Morphogen rules: design principles of gradient-
mediated embryo patterning. Development 142, 3996-4009.

Cohen, M., Briscoe, J. and Blassberg, R. (2013). Morphogen interpretation: the
transcriptional logic of neural tube patterning. Curr. Opin. Genet. Dev. 23,
423-428.

Cohen, M., Page, K. M., Perez-Carrasco, R., Barnes, C. P. andBriscoe, J. (2014).
A theoretical framework for the regulation of Shh morphogen-controlled gene
expression. Development 141, 3868-3878.

Davidson, E. H. (2010). Emerging properties of animal gene regulatory networks.
Nature 468, 911-920.

Jaeger, J., Surkova, S., Blagov, M., Janssens, H., Kosman, D., Kozlov, K. N.,
Manu, K. N., Myasnikova, E., Vanario-Alonso, C. E., Samsonova, M. et al.
(2004). Dynamic control of positional information in the early Drosophila embryo.
Nature 430, 368-371.

Junker, J. P., Peterson, K. A., Nishi, Y., Mao, J., McMahon, A. P. and van
Oudenaarden, A. (2014). A predictive model of bifunctional transcription factor
signaling during embryonic tissue patterning. Dev. Cell 31, 448-460.

Kanodia, J. S., Liang, H.-L., Kim, Y., Lim, B., Zhan,M., Lu, H., Rushlow, C. A. and
Shvartsman, S. Y. (2012). Pattern formation by graded and uniform signals in the
early Drosophila embryo. Biophys. J. 102, 427-433.

Lek, M., Dias, J. M., Marklund, U., Uhde, C. W., Kurdija, S., Lei, Q., Sussel, L.,
Rubenstein, J. L., Matise, M. P., Arnold, H. H. et al. (2010). A homeodomain
feedback circuit underlies step-function interpretation of a Shh morphogen
gradient during ventral neural patterning. Development 137, 4051-4060.

Manu, S. Y., Surkova, S., Spirov, A. V., Gursky, V. V., Janssens, H., Kim, A.-R.,
Radulescu, O., Vanario-Alonso, C. E., Sharp, D. H., Samsonova, M. et al.
(2009). Canalization of gene expression and domain shifts in the Drosophila
blastoderm by dynamical attractors. PLoS Comput. Biol. 5, e1000303.

Nien, C.-Y., Liang, H.-L., Butcher, S., Sun, Y., Fu, S., Gocha, T., Kirov, N., Manak,
J. R. and Rushlow, C. (2011). Temporal coordination of gene networks by Zelda
in the early Drosophila embryo. PLoS Genet. 7, e1002339.

Ochoa-Espinosa, A., Yucel, G., Kaplan, L., Pare, A., Pura, N., Oberstein, A.,
Papatsenko, D. and Small, S. (2005). The role of binding site cluster strength in
Bicoid-dependent patterning in Drosophila. Proc. Natl. Acad. Sci. USA 102,
4960-4965.

Oosterveen, T., Kurdija, S., Alekseenko, Z., Uhde, C. W., Bergsland, M.,
Sandberg, M., Andersson, E., Dias, J. M., Muhr, J. and Ericson, J. (2012).
Mechanistic differences in the transcriptional interpretation of local and long-range
Shh morphogen signaling. Dev. Cell 23, 1006-1019.

Oosterveen, T., Kurdija, S., Enstero, M., Uhde, C. W., Bergsland, M., Sandberg,
M., Sandberg, R., Muhr, J. and Ericson, J. (2013). SoxB1-driven transcriptional
network underlies neural-specific interpretation of morphogen signals. Proc. Natl.
Acad. Sci. USA 110, 7330-7335.

Peterson, K. A., Nishi, Y., Ma,W., Vedenko, A., Shokri, L., Zhang, X., McFarlane,
M., Baizabal, J.-M., Junker, J. P., van Oudenaarden, A. et al. (2012). Neural-
specific Sox2 input and differential Gli-binding affinity provide context and
positional information in Shh-directed neural patterning. Genes Dev. 26,
2802-2816.

Uhde, C. W. and Ericson, J. (2016). Transcriptional interpretation of Shh
morphogen signaling: computational modeling validates empirically established
models. Development 143, 1638-1640.

10.1242/dev.138461

1643

CORRESPONDENCE Development (2016) 143, 1638-1643

D
E
V
E
LO

P
M

E
N
T


