73 research outputs found

    Chemokine CXCL13 is overexpressed in the tumour tissue and in the peripheral blood of breast cancer patients

    Get PDF
    The abilities of chemokines in orchestrating cellular migration are utilised by different (patho-)biological networks including malignancies. However, except for CXCR4/CXCL12, little is known about the relation between tumour-related chemokine expression and the development and progression of solid tumours like breast cancer. In this study, microarray analyses revealed the overexpression of chemokine CXCL13 in breast cancer specimens. This finding was confirmed by real-time polymerase chain reaction in a larger set of samples (n=34) and cell lines, and was validated on the protein level performing Western blot, ELISA, and immunohistochemistry. Levels of CXCR5, the receptor for CXCL13, were low in malignant and healthy breast tissues, and surface expression was not detected in vitro. However, we observed a strong (P=0.0004) correlation between the expressions of CXCL13 and CXCR5 in breast cancer tissues, indicating a biologically relevant role of CXCR5 in vivo. Finally, we detected significantly elevated serum concentrations of CXCL13 in patients with metastatic disease (n=54) as compared with controls (n=44) and disease-free patients (n=48). In conclusion, CXCL13 is overexpressed within breast cancer tissues, and increased serum levels of this cytokine can be found in breast cancer patients with metastatic disease pointing to a role of CXCL13 in the progression of breast cancer, suggesting that CXCL13 might serve as a useful therapeutic target and/or diagnostic marker in this malignancy

    Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection

    Full text link

    Biomineralization in Diatoms: The Organic Templates

    No full text
    While the geometries of diatom frustules have been investigated in detail, the processes leading to their formation—morphogenesis and biomineralization—are not well understood. The study of organic templates, which are suspected to be important for biosilicification of diatoms, have been mainly investigated on the basis of diverse demineralization techniques. In contrast to naturally occurring dissolution of diatom cell walls in natural habitats, all experiments in vitro were based on chemical reagents including HF- or alkali-based techniques with addition of some additives as presented in this chapter. Mostly, the amino acids (serine, threonine, hydrohyproline) diverse proteinaceous materials (frustulins, pleuralins, silaffins, silacidins, circulins) as well as polyamines have been proposed to regulate biosilicification in vivo in diatoms. In this chapter, we review the biochemical pathways and potential functions of these chemical compounds and their roles in the biomineralization process. In addition, we demonstrate the presence of chitin and discuss its potential as scaffolding as well as a template material in siliceous cell walls of diatoms. The current findings show that a complex network of different organic components is responsible for the biomineralization of diatoms. Since both the organic network and the precipitated silica are integrated in the material which forms the diatom frustule, the material properties must differ from that of pure silica. As the material properties are a crucial factor for the defensive performance of the frustule and thus their survival, it is likely that organic templates for silicification play a role both for the development process and for the improvement of the material properties of the finished shells

    Organization of interest groups

    No full text
    Insight into the internal organization of interest groups is crucial for understanding their representative function and intermediary role in contemporary democracies. The particular organizational features of groups shape their ability to fulfill their potential as “transmission belts” between society and the state. Given these important repercussion of organizational choices, it is not surprising that decisions about the specific mission of the organization, the type of members, and their precise role in decision-making processes are often strongly contested when a new interest group is being established. Once these choices have been made, however, an organization’s mission and structure tend to be rather inert and mostly evolve in a path-dependent, incremental manner (Fraussen, 2014).This chapter defines interest groups as membership-based formal organizations, who seek to represent the interests of a particular constituency or advocate for a particular cause in the political arena. This chapter first clarifies the importance of the internal organization of interest groups and subsequently addresses the use and value of different group typologies. The last two sections focus on clarifying feature- and identity-based approaches for identifying variation in organizational form and explore how digital technologies might alter the organizational design of interest groups and how they conceive and involve their constituency.The politics and administration of institutional chang
    • 

    corecore