17 research outputs found

    Supporting self-regulated learning

    Get PDF
    Self-regulated learning (SRL) competences are crucial for lifelong learning. Their cultivation requires the right balance between freedom and guidance during the learning processes. Current learning systems and approaches, such as personal learning environments, give overwhelming freedom, but also let weak learners alone. Other systems, such as learning management systems or adaptive systems, tend to institutionalise learners too much, which does not support the development of SRL competences. This chapter presents possibilities and approaches to support SRL by the use of technology. After discussing the theoretical background of SRL and related technologies, a formal framework is presented that describes the SRL process, related competences, and guidelines. Furthermore, a variety of methods is presented, how learners can be supported to learn in a self-regulated way

    Evaluation of a range of mammalian and mosquito cell lines for use in Chikungunya virus research

    Get PDF
    Chikungunya virus (CHIKV) is becoming an increasing global health issue which has spread across the globe and as far north as southern Europe. There is currently no vaccine or anti-viral treatment available. Although there has been a recent increase in CHIKV research, many of these in vitro studies have used a wide range of cell lines which are not physiologically relevant to CHIKV infection in vivo. In this study, we aimed to evaluate a panel of cell lines to identify a subset that would be both representative of the infectious cycle of CHIKV in vivo, and amenable to in vitro applications such as transfection, luciferase assays, immunofluorescence, western blotting and virus infection. Based on these parameters we selected four mammalian and two mosquito cell lines, and further characterised these as potential tools in CHIKV research

    Pre-dilution on-line haemofiltration vs low-flux haemodialysis: a randomized prospective study

    No full text
    BACKGROUND: Accumulation of larger molecular weight uraemic toxins molecules may have a negative effect on the cardiovascular and nutritional state of dialysis patients and influence uraemic symptomatology. Their clearance can be enhanced by the use of haemofiltration (HF). METHODS: The effects of low-flux haemodialysis (HD) (ultrapure dialysate; polyamide membranes) and pre-dilution on-line HF (1:1 blood/substitution ratio; target filtration volume: 1.2 times body weight) on cardiovascular and nutritional parameters, interdialytic levels of uraemic toxins and quality of life (QOL; Laupacis questionnaire) were assessed during 1 year follow-up. Forty patients were randomized. RESULTS: After 1 year, 27 patients were eligible for analysis (HF: 13 patients; HD: 14 patients). Left ventricular mass index did not change in the HF patients (127+/-33 --> 131+/-36 g/m(2) after 12 months) or in the HD group (135+/-34 --> 138+/-32 g/m(2)). Also, there were no changes in pulse wave velocity, and 48 h systolic and diastolic blood pressures. Lean body mass, assessed by dual-energy X-ray absorptiometry, increased in the HF group (44.8+/-8.9 --> 46.2+/-9.6 kg; P 50.6+/-8.8 kg), although differences between groups were not significant. Insulin-like growth factor-1 levels remained stable in the HF patients, but decreased in the HD group (P 5.0+/-1.1; P 4.4+/-1.4). beta2-microglobulin, complement factor D and homocysteine decreased significantly in the HF but not in the HD group, whereas l-ADMA, leptin and advanced glycation end-products-related fluorescence did not change. CONCLUSIONS: No changes in cardiovascular parameters were observed during pre-dilution on-line HF compared with low-flux HD. Treatment with on-line HF resulted in marked changes in the uraemic toxicity profile, an improvement in physical well-being and a small improvement in nutritional state

    Management Strategies to Effect Change in Intensive Care Units: Lessons from the World of Business. Part I. Targeting Quality Improvement Initiatives

    No full text
    The business community has developed strategies to ensure the quality of the goods or services they produce and to improve the management of multidisciplinary work teams. With modification, many of these techniques can be imported into intensive care units (ICUs) to improve clinical operations and patient safety. In Part I of a three-part ATS Seminar series, we argue for adopting business management strategies in ICUs and set forth strategies for targeting selected quality improvement initiatives. These tools are relevant to health care today as focus is placed on limiting low-value care and measuring, reporting, and improving quality. In the ICU, the complexity of illness and the need to standardize processes make these tools even more appealing. Herein, we highlight four techniques to help prioritize initiatives. First, the "80/20 rule" mandates focus on the few (20%) interventions likely to drive the majority (80%) of improvement. Second, benchmarking--a process of comparison with peer units or institutions--is essential to identifying areas of strength and weakness. Third, root cause analyses, in which structured retrospective reviews of negative events are performed, can be used to identify and fix systems errors. Finally, failure mode and effects analysis--a process aimed at prospectively identifying potential sources of error--allows for systems fixes to be instituted in advance to prevent negative outcomes. These techniques originated in fields other than health care, yet adoption has and can help ICU managers prioritize issues for quality improvement
    corecore