47 research outputs found

    Association of adipocyte genes with ASP expression: a microarray analysis of subcutaneous and omental adipose tissue in morbidly obese subjects

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prevalence of obesity is increasing to pandemic proportions. However, obese subjects differ in insulin resistance, adipokine production and co-morbidities. Based on fasting plasma analysis, obese subjects were grouped as Low Acylation Stimulating protein (ASP) and Triglyceride (TG) (LAT) vs High ASP and TG (HAT). Subcutaneous (SC) and omental (OM) adipose tissues (n = 21) were analysed by microarray, and biologic pathways in lipid metabolism and inflammation were specifically examined.</p> <p>Methods</p> <p>LAT and HAT groups were matched in age, obesity, insulin, and glucose, and had similar expression of insulin-related genes (InsR, IRS-1). ASP related genes tended to be increased in the HAT group and were correlated (factor B, adipsin, complement C3, p < 0.01 each). Differences between LAT and HAT group were almost exclusively in SC tissue, with little difference in OM tissue. Increased C5L2 (p < 0.01), an ASP receptor, in HAT suggests a compensatory ASP pathway, associated with increased TG storage.</p> <p>Results</p> <p>HAT adipose tissue demonstrated increased lipid related genes for storage (CD36, DGAT1, DGAT2, SCD1, FASN, and LPL), lipolysis (HSL, CES1, perilipin), fatty acid binding proteins (FABP1, FABP3) and adipocyte differentiation markers (CEBPα, CEBPβ, PPARγ). By contrast, oxidation related genes were decreased (AMPK, UCP1, CPT1, FABP7). HAT subjects had increased anti-inflammatory genes TGFB1, TIMP1, TIMP3, and TIMP4 while proinflammatory PIG7 and MMP2 were also significantly increased; all genes, p < 0.025.</p> <p>Conclusion</p> <p>Taken together, the profile of C5L2 receptor, ASP gene expression and metabolic factors in adipose tissue from morbidly obese HAT subjects suggests a compensatory response associated with the increased plasma ASP and TG.</p

    The effect of Puerariae radix on lipoprotein metabolism in liver and intestinal cells

    Get PDF
    BACKGROUND: Animal studies investigating the beneficial effects of Puerariae radix on cardiovascular disease have suggested this plant possesses anti-diabetic and lipid lowering properties. However, the exact mechanism by which Puerariae radix affects lipid metabolism is currently unknown. The aim of this study was to investigate the effect of the water extract of Puerariae radix on the secretion of VLDL and chylomicrons from HepG2 liver cells and CaCo2 cells, respectively, in humans. METHODS: The amount of apoB(100 )(a protein marker for VLDL) and apoB(48 )(a protein marker for chylomicrons) in cells and media were quantified by Western Blotting and enhanced chemiluminescence (ECL). Total, free and esterified cholesterol concentrations were measured by gas liquid chromatography. RESULTS: Treatment of cells with water extract of Puerariae radix significantly decreased apoB(100 )production and secretion from HepG2 cells up to 66% in a dose dependent manner. The intracellular total cholesterol and free cholesterol concentration in HepG2 cells also decreased with increasing concentration of the Puerariae radix. In contrast, water extract of Puerariae radix attenuated apoB(48 )concentrations in cells, but not apoB(48 )secretion from CaCo2 enterocytes. CONCLUSIONS: Collectively, our findings suggest that the water extract of Puerariae radix attenuates the hepatic lipoprotein production and secretion. Our present cell culture findings may explain why circulating VLDL and LDL levels were attenuated in animals supplemented with Puerariae radix. Since decreasing the production and secretion of atherogenic lipoproteins decreases the risk of development of cardiovascular disease, diets supplemented with radix may provide a safe and effective beneficial cardioprotective effects in humans

    ApoB100-LDL Acts as a Metabolic Signal from Liver to Peripheral Fat Causing Inhibition of Lipolysis in Adipocytes

    Get PDF
    International audienceBACKGROUND: Free fatty acids released from adipose tissue affect the synthesis of apolipoprotein B-containing lipoproteins and glucose metabolism in the liver. Whether there also exists a reciprocal metabolic arm affecting energy metabolism in white adipose tissue is unknown. METHODS AND FINDINGS: We investigated the effects of apoB-containing lipoproteins on catecholamine-induced lipolysis in adipocytes from subcutaneous fat cells of obese but otherwise healthy men, fat pads from mice with plasma lipoproteins containing high or intermediate levels of apoB100 or no apoB100, primary cultured adipocytes, and 3T3-L1 cells. In subcutaneous fat cells, the rate of lipolysis was inversely related to plasma apoB levels. In human primary adipocytes, LDL inhibited lipolysis in a concentration-dependent fashion. In contrast, VLDL had no effect. Lipolysis was increased in fat pads from mice lacking plasma apoB100, reduced in apoB100-only mice, and intermediate in wild-type mice. Mice lacking apoB100 also had higher oxygen consumption and lipid oxidation. In 3T3-L1 cells, apoB100-containing lipoproteins inhibited lipolysis in a dose-dependent fashion, but lipoproteins containing apoB48 had no effect. ApoB100-LDL mediated inhibition of lipolysis was abolished in fat pads of mice deficient in the LDL receptor (Ldlr(-/-)Apob(100/100)). CONCLUSIONS: Our results show that the binding of apoB100-LDL to adipocytes via the LDL receptor inhibits intracellular noradrenaline-induced lipolysis in adipocytes. Thus, apoB100-LDL is a novel signaling molecule from the liver to peripheral fat deposits that may be an important link between atherogenic dyslipidemias and facets of the metabolic syndrome

    Adipose Tissue Gene Expression of Factors Related to Lipid Processing in Obesity

    Get PDF
    BACKGROUND: Adipose tissue lipid storage and processing capacity can be a key factor for obesity-related metabolic disorders such as insulin resistance and diabetes. Lipid uptake is the first step to adipose tissue lipid storage. The aim of this study was to analyze the gene expression of factors involved in lipid uptake and processing in subcutaneous (SAT) and visceral (VAT) adipose tissue according to body mass index (BMI) and the degree of insulin resistance (IR). METHODS AND PRINCIPAL FINDINGS: VLDL receptor (VLDLR), lipoprotein lipase (LPL), acylation stimulating protein (ASP), LDL receptor-related protein 1 (LRP1) and fatty acid binding protein 4 (FABP4) gene expression was measured in VAT and SAT from 28 morbidly obese patients with Type 2 Diabetes Mellitus (T2DM) or high IR, 10 morbidly obese patients with low IR, 10 obese patients with low IR and 12 lean healthy controls. LPL, FABP4, LRP1 and ASP expression in VAT was higher in lean controls. In SAT, LPL and FABP4 expression were also higher in lean controls. BMI, plasma insulin levels and HOMA-IR correlated negatively with LPL expression in both VAT and SAT as well as with FABP4 expression in VAT. FABP4 gene expression in SAT correlated inversely with BMI and HOMA-IR. However, multiple regression analysis showed that BMI was the main variable contributing to LPL and FABP4 gene expression in both VAT and SAT. CONCLUSIONS: Morbidly obese patients have a lower gene expression of factors related with lipid uptake and processing in comparison with healthy lean persons

    Plasma metabolomics and proteomics profiling after a postprandial challenge reveal subtle diet effects on human metabolic status

    Get PDF
    We introduce the metabolomics and proteomics based Postprandial Challenge Test (PCT) to quantify the postprandial response of multiple metabolic processes in humans in a standardized manner. The PCT comprised consumption of a standardized 500 ml dairy shake containing respectively 59, 30 and 12 energy percent lipids, carbohydrates and protein. During a 6 h time course after PCT 145 plasma metabolites, 79 proteins and 7 clinical chemistry parameters were quantified. Multiple processes related to metabolism, oxidation and inflammation reacted to the PCT, as demonstrated by changes of 106 metabolites, 31 proteins and 5 clinical chemistry parameters. The PCT was applied in a dietary intervention study to evaluate if the PCT would reveal additional metabolic changes compared to non-perturbed conditions. The study consisted of a 5-week intervention with a supplement mix of anti-inflammatory compounds in a crossover design with 36 overweight subjects. Of the 231 quantified parameters, 31 had different responses over time between treated and control groups, revealing differences in amino acid metabolism, oxidative stress, inflammation and endocrine metabolism. The results showed that the acute, short term metabolic responses to the PCT were different in subjects on the supplement mix compared to the controls. The PCT provided additional metabolic changes related to the dietary intervention not observed in non-perturbed conditions. Thus, a metabolomics based quantification of a standardized perturbation of metabolic homeostasis is more informative on metabolic status and subtle health effects induced by (dietary) interventions than quantification of the homeostatic situation
    corecore