39 research outputs found

    Genetic Structure of the Polymorphic Metrosideros (Myrtaceae) Complex in the Hawaiian Islands Using Nuclear Microsatellite Data

    Get PDF
    Five species of Metrosideros (Myrtaceae) are recognized in the Hawaiian Islands, including the widespread M. polymorpha, and are characterized by a multitude of distinctive, yet overlapping, habit, ecological, and morphological forms. It remains unclear, despite several previous studies, whether the morphological variation within Hawaiian Metrosideros is due to hybridization, genetic polymorphism, phenotypic plasticity, or some combination of these processes. The Hawaiian Metrosideros complex has become a model system to study ecology and evolution; however this is the first study to use microsatellite data for addressing inter-island patterns of variation from across the Hawaiian Islands.Ten nuclear microsatellite loci were genotyped from 143 individuals of Metrosideros. We took advantage of the bi-parental inheritance and rapid mutation rate of these data to examine the validity of the current taxonomy and to investigate whether Metrosideros plants from the same island are more genetically similar than plants that are morphologically similar. The Bayesian algorithm of the program structure was used to define genetic groups within Hawaiian Metrosideros and the closely related taxon M. collina from the Marquesas and Austral Islands. Several standard and nested AMOVAs were conducted to test whether the genetic diversity is structured geographically or taxonomically.The results suggest that Hawaiian Metrosideros have dynamic gene flow, with genetic and morphological diversity structured not simply by geography or taxonomy, but as a result of parallel evolution on islands following rampant island-island dispersal, in addition to ancient chloroplast capture. Results also suggest that the current taxonomy requires major revisions in order to reflect the genetic structure revealed in the microsatellite data

    Naturalised Vitis Rootstocks in Europe and Consequences to Native Wild Grapevine

    Get PDF
    The genus Vitis is represented by several coexisting species in Europe. Our study focuses on naturalised rootstocks that originate in viticulture. The consequences of their presence to the landscape and to native European species (Vitis vinifera ssp. silvestris) are evaluated. This study compares ecological traits (seven qualitative and quantitative descriptors) and the genetic diversity (10 SSR markers) of populations of naturalised rootstocks and native wild grapevines. 18 large naturalised rootstock populations were studied in the RhĂ´ne watershed. Wild European grapevines are present in four main habitats (screes, alluvial forests, hedges, and streamside hedges). In contrast, naturalised rootstock populations are mainly located in alluvial forests, but they clearly take advantage of alluvial system dynamics and connectivity at the landscape level. These latter populations appear to reproduce sexually, and show a higher genetic diversity than Vitis vinifera ssp. silvestris. The regrouping of naturalised rootstocks in interconnected populations tends to create active hybrid swarms of rootstocks. The rootstocks show characters of invasive plants. The spread of naturalised rootstocks in the environment, the acceleration of the decline of the European wild grapevine, and the propagation of genes of viticultural interest in natural populations are potential consequences that should be kept in mind when undertaking appropriate management measures

    Genetic diversity of Moroccan grape accessions conserved ex situ compared to Maghreb and European gene pools

    No full text
    Equipe DAVEM = DiversitĂ© et Adaptation de la Vigne et des Espèces MĂ©diterranĂ©ennes Contact : [email protected] diversity present in Morocco and the part of this diversity used nowadays are poorly documented. In order to choose diversified genotypes, to select them so that their agronomic interest will be tested, a group of 21 autochthonous cultivars preserved in the germplasm collections of SODEA and 18 Moroccan cultivars from "Domaine de Vassal" INRA grape collection was compared to a group of cultivars from neighbouring countries (Algeria and Tunisia), and from a core collection optimizing simple sequence repeat (SSR) allelic diversity of grape. Data from 20 nuclear and 3 chloroplastic SSR markers were obtained for this set of 211 cultivars. A total of 156 alleles (mean of 7.8 alleles per locus) were detected for the nSSRs and 7 alleles for the cpSSR in the Moroccan group. Chlorotype diversity in Moroccan and Algerian group were similar, but slightly lower than in the Tunisian group and the core collection. Similarly, the nSSR diversity was high in the core collection and low in the Moroccan and the Algerian groups compared to the two other groups. Clustering of cultivars based on nSSR data reflected their geographical origin and, to a certain extent, the use of the cultivars. The specificity of the Moroccan plant material was attested by the Bayesian analysis using Structure, while differences of the core collection were clearly revealed both by the Bayesian and a multivariate analysis. These results confirm the differentiation of the material from Maghreb and more specifically of Moroccan material, having evolved independently from Europe

    Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.).

    No full text
    Inheritance of nuclear microsatellite markers (nSSR) has been proved to be a powerful tool to verify or uncover the parentage of grapevine cultivars. The aim of the present study was to undertake an extended parentage analysis using a large sample of Vitis vinifera cultivars held in the INRA "Domaine de Vassal" Grape Germplasm Repository (France). A dataset of 2,344 unique genotypes (i.e. cultivars without synonyms, clones or mutants) identified using 20 nSSR was analysed with FAMOZ software. Parentages showing a logarithm of odds score higher than 18 were validated in relation to the historical data available. The analysis first revealed the full parentage of 828 cultivars resulting in: (1) 315 original full parentages uncovered for traditional cultivars, (2) 100 full parentages confirming results established with molecular markers in prior papers and 32 full parentages that invalidated prior results, (3) 255 full parentages confirming pedigrees as disclosed by the breeders and (4) 126 full parentages that invalidated breeders' data. Second, incomplete parentages were determined in 1,087 cultivars due to the absence of complementary parents in our cultivar sample. Last, a group of 276 genotypes showed no direct relationship with any other cultivar in the collection. Compiling these results from the largest set of parentage data published so far both enlarges and clarifies our knowledge of the genetic constitution of cultivated V. vinifera germplasm. It also allows the identification of the main genitors involved in varietal assortment evolution and grapevine breeding
    corecore