344 research outputs found

    A thick shell Casimir effect

    Full text link
    We consider the Casimir energy of a thick dielectric-diamagnetic shell under a uniform velocity light condition, as a function of the radii and the permeabilities. We show that there is a range of parameters in which the stress on the outer shell is inward, and a range where the stress on the outer shell is outward. We examine the possibility of obtaining an energetically stable configuration of a thick shell made of a material with a fixed volume

    Photon Green's function and the Casimir energy in a medium

    Get PDF
    A new expansion is established for the Green's function of the electromagnetic field in a medium with arbitrary ϵ\epsilon and μ\mu. The obtained Born series are shown to consist of two types of interactions - the usual terms (denoted P\cal P) that appear in the Lifshitz theory combined with a new kind of terms (which we denote by Q\cal Q) associated with the changes in the permeability of the medium. Within this framework the case of uniform velocity of light (ϵμ=const\epsilon\mu={\rm const}) is studied. We obtain expressions for the Casimir energy density and the first non-vanishing contribution is manipulated to a simplified form. For (arbitrary) spherically symmetric μ\mu we obtain a simple expression for the electromagnetic energy density, and as an example we obtain from it the Casimir energy of a dielectric-diamagnetic ball. It seems that the technique presented can be applied to a variety of problems directly, without expanding the eigenmodes of the problem and using boundary condition considerations

    Casimir energy of a dilute dielectric ball with uniform velocity of light at finite temperature

    Full text link
    The Casimir energy, free energy and Casimir force are evaluated, at arbitrary finite temperature, for a dilute dielectric ball with uniform velocity of light inside the ball and in the surrounding medium. In particular, we investigate the classical limit at high temperature. The Casimir force found is repulsive, as in previous calculations.Comment: 15 pages, 1 figur

    Effects of Accelerate Ageing and Low Temperatures on Germination of Range Grasses

    Get PDF
    Accelerated ageing and cold tests were used to determine the seed vigour of different valuable forage grasses from the temperate semiarid region of Argentina (Piptochaetium napostaense, Poa ligularis, Stipa longiglumis, Stipa tenuis, Digitaria californica, Pappophorum subbulbosum, Setaria leiantha, Sorghastrum pellitum, Trichloris crinita). In general, warm season species showed greater vigour than cool season species

    Casimir energy of a dilute dielectric ball in the mode summation method

    Full text link
    In the (ϵ1ϵ2)2(\epsilon_1-\epsilon_2)^2--approximation the Casimir energy of a dilute dielectric ball is derived using a simple and clear method of the mode summation. The addition theorem for the Bessel functions enables one to present in a closed form the sum over the angular momentum before the integration over the imaginary frequencies. The linear in (ϵ1ϵ2)(\epsilon_1-\epsilon_2) contribution into the vacuum energy is removed by an appropriate subtraction. The role of the contact terms used in other approaches to this problem is elucidated.Comment: 14 pages, REVTeX, no figures, no tables; presentation is made better, new references are adde

    Full density matrix dynamics for large quantum systems: Interactions, Decoherence and Inelastic effects

    Full text link
    We develop analytical tools and numerical methods for time evolving the total density matrix of the finite-size Anderson model. The model is composed of two finite metal grains, each prepared in canonical states of differing chemical potential and connected through a single electronic level (quantum dot or impurity). Coulomb interactions are either excluded all together, or allowed on the dot only. We extend this basic model to emulate decoherring and inelastic scattering processes for the dot electrons with the probe technique. Three methods, originally developed to treat impurity dynamics, are augmented to yield global system dynamics: the quantum Langevin equation method, the well known fermionic trace formula, and an iterative path integral approach. The latter accommodates interactions on the dot in a numerically exact fashion. We apply the developed techniques to two open topics in nonequilibrium many-body physics: (i) We explore the role of many-body electron-electron repulsion effects on the dynamics of the system. Results, obtained using exact path integral simulations, are compared to mean-field quantum Langevin equation predictions. (ii) We analyze aspects of quantum equilibration and thermalization in large quantum systems using the probe technique, mimicking elastic-dephasing effects and inelastic interactions on the dot. Here, unitary simulations based on the fermionic trace formula are accompanied by quantum Langevin equation calculations

    Casimir forces in a T operator approach

    Get PDF
    We explore the scattering approach to Casimir forces. Our main tool is the description of Casimir energy in terms of transition operators, as presented in Kenneth and Klich, Phys. Rev. Lett. 97, 160401 (2006). We study the convergence properties of the formula and how to utilize it, together with scattering data to compute the force. We illustrate the approach by describing the force between scatterers in 1d and 3d,, and in particular show how it may be applied in order to study the interaction between two spherical bodies at all distances

    Auxiliary fermion approach to the resonant inelastic x-ray scattering response in an underdoped cuprate

    Get PDF
    We describe a method for calculating the resonant inelastic x-ray scattering (RIXS) response—including the dynamics of the transient core hole—of many-body systems with nontrivial gap structure encoded in their single particle Green's function. Our approach introduces auxiliary fermions in order to obtain a form amenable to the determinant method of Benjamin et al., [Phys. Rev. Lett. 112, 247002 (2014)], and is applicable to systems where interactions are most strongly felt through a renormalization of the single particle propagator. As a test case we consider the Yang-Rice-Zhang ansatz for cuprate phenomena in the underdoped “pseudogap” regime, which remains a popular tool for interpreting the results of experimental probes. We show that taking the core hole dynamics into account for a system described by this ansatz pushes the RIXS peaks towards higher energy transfer, improving agreement with experiments

    Distribution of velocities and acceleration for a particle in Brownian correlated disorder: inertial case

    Full text link
    We study the motion of an elastic object driven in a disordered environment in presence of both dissipation and inertia. We consider random forces with the statistics of random walks and reduce the problem to a single degree of freedom. It is the extension of the mean field ABBM model in presence of an inertial mass m. While the ABBM model can be solved exactly, its extension to inertia exhibits complicated history dependence due to oscillations and backward motion. The characteristic scales for avalanche motion are studied from numerics and qualitative arguments. To make analytical progress we consider two variants which coincide with the original model whenever the particle moves only forward. Using a combination of analytical and numerical methods together with simulations, we characterize the distributions of instantaneous acceleration and velocity, and compare them in these three models. We show that for large driving velocity, all three models share the same large-deviation function for positive velocities, which is obtained analytically for small and large m, as well as for m =6/25. The effect of small additional thermal and quantum fluctuations can be treated within an approximate method.Comment: 42 page

    Decoherence induced by interacting quantum spin baths

    Full text link
    We study decoherence induced on a two-level system coupled to a one-dimensional quantum spin chain. We consider the cases where the dynamics of the chain is determined by the Ising, XY, or Heisenberg exchange Hamiltonian. This model of quantum baths can be of fundamental importance for the understanding of decoherence in open quantum systems, since it can be experimentally engineered by using atoms in optical lattices. As an example, here we show how to implement a pure dephasing model for a qubit system coupled to an interacting spin bath. We provide results that go beyond the case of a central spin coupled uniformly to all the spins of the bath, in particular showing what happens when the bath enters different phases, or becomes critical; we also study the dependence of the coherence loss on the number of bath spins to which the system is coupled and we describe a coupling-independent regime in which decoherence exhibits universal features, irrespective of the system-environment coupling strength. Finally, we establish a relation between decoherence and entanglement inside the bath. For the Ising and the XY models we are able to give an exact expression for the decay of coherences, while for the Heisenberg bath we resort to the numerical time-dependent Density Matrix Renormalization Group.Comment: 18 pages, 20 figure
    corecore