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We describe a method for calculating the resonant inelastic x-ray scattering (RIXS) response—including the
dynamics of the transient core hole—of many-body systems with nontrivial gap structure encoded in their single
particle Green’s function. Our approach introduces auxiliary fermions in order to obtain a form amenable to
the determinant method of Benjamin et al., [Phys. Rev. Lett. 112, 247002 (2014)], and is applicable to systems
where interactions are most strongly felt through a renormalization of the single particle propagator. As a test
case we consider the Yang-Rice-Zhang ansatz for cuprate phenomena in the underdoped “pseudogap” regime,
which remains a popular tool for interpreting the results of experimental probes. We show that taking the core
hole dynamics into account for a system described by this ansatz pushes the RIXS peaks towards higher energy
transfer, improving agreement with experiments.

DOI: 10.1103/PhysRevB.96.155101

I. INTRODUCTION

In order to assess the validity of theories of strongly
correlated phenomena in materials, it is necessary to compare
data from experimental probes to theoretical predictions. If
these comparisons are to be meaningful, it is vital to accurately
account for the physics of the measurement techniques.
Doing so for inelastic neutron scattering studies of quantum
spin chains has enabled highly sensitive experimental tests,
in some cases providing excellent support for theory [1].
Conversely, for the cuprate high temperature superconductors
the origins and roles of many observed features remain unclear,
despite a wealth of experimental studies. It is therefore of
paramount importance to be able to discriminate between
the experimentally observable aspects of different theories of
cuprate phenomena.

Recently, resonant inelastic x-ray scattering (RIXS) has
emerged as a very useful probe of strongly correlated
condensed matter [2–5]. One of the exciting features of
RIXS compared to other probes, such as angle-resolved
photoemission spectroscopy (ARPES) or neutron scattering, is
the ability to reach high energy and momentum transfer, which
makes it possible to probe the full dispersion of excitations [6].
RIXS may also serve as a sensitive measure of band structure
both below and above the Fermi level in itinerant electron
systems [7].

A subtle point in understanding RIXS is the precise role
of the core hole potential during the intermediate states of
the scattering process. Often it is an excellent approximation
to assume a very short lifetime for the hole, allowing one to
incorporate the hole in a relatively straightforward manner
and relate the signal to a dynamical susceptibility [8]. In many
cases the RIXS response has been interpreted directly in terms
of a charge-charge or spin-spin correlation function calculated
for some proposed model. This approach can be appropriate
when both the core hole lifetime and potential are negligible
compared to all other relevant scales. Furthermore, a frequent
tactical assumption is that the RIXS signal is dominated by

one excitation channel, neglecting the simultaneous interplay
of charge and spin dynamics in the response. Therefore a
more sophisticated treatment is necessary in systems, such as
doped itinerant materials, where there are other time scales
that are on the same order as the core hole lifetime and
charge and spin fluctuations are strong. For example, a recent
comparative study for cuprates at the Cu L edge employing
exact diagonalization shows that the ultrashort lifetime approx-
imation is not always enough to describe the RIXS signal in
a qualitatively accurate way, because of dynamics associated
with the presence of the core hole [9]. Disentangling these
“experimental” effects from those originating in different theo-
retical descriptions of the system under study will only become
more important in the future as RIXS resolution improves.

An analytical treatment of the RIXS core hole—applicable
to simple hopping Hamiltonians, including possible pair-
ing terms—suggests that it can have significant effects for
band structures with parameters appropriate to the cuprates
[7,10,11]. Nevertheless, the cuprates are strongly correlated
materials, and one must go beyond simple band structure
models to capture their most interesting properties.

Here we propose a method that extends the treatment
of the RIXS core hole due to Benjamin et al. [10], to
nontrivial systems with interaction effects encoded in their
single particle Green’s function. To demonstrate our approach,
we consider the Yang-Rice-Zhang (YRZ) ansatz [12] for
cuprates in the “pseudogap” region, which takes the form of a
phenomenological, interacting Green’s function.

The pseudogap region epitomizes the strongly correlated
behavior of the cuprates and is characterized by an anomalous
Fermi surface—between the undoped insulating and heavily
overdoped metallic phases—which consists of four discon-
nected arcs [13]. Motivated by studies of weakly coupled Hub-
bard ladders [14], Yang, Rice, and Zhang [12] (YRZ) proposed
a phenomenological ansatz Green’s function to describe this
peculiar structure. The YRZ propagator yields a Fermi surface
of four hole pockets, with area proportional to doping x, and
vanishing spectral weight at the backs of the pockets due to
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lines of “Luttinger zeros”. This ansatz has proven effective at
reproducing and parametrizing the results ARPES [15] and
a variety of other experimental probes [16]. Recently it has
been found to be consistent with the particle-hole asymmetric
gap detected by time resolved ARPES [17] and with Hall
measurements of the carrier density in the pseudogap region
[18]. We also note that approaches conceptually similar to
YRZ, that introduce phenomenologically finite quasiparticle
lifetime, have also been used to describe both ARPES and
STM experiments in high-Tc cuprates [19–21].

Initially formulated as a two point function, the YRZ ansatz
was extended to describe higher order correlation functions
[22] by connecting it to a slave boson treatment of the t-J
model [23]. In this form, combined with YRZ band parameters
provided by ARPES, it has been useful for interpreting RIXS
results [24,25]. However to date there has been no attempt
to systematically incorporate the important physics of the
transient core hole potential in the RIXS response predicted by
YRZ. Indeed, since the theory is not free, it does not allow the
calculation of some other quantities such as density-density
correlations, without making further assumptions [22].

In the next section we show how to calculate the RIXS
response of a system with a YRZ-like Green’s function,
while still treating the core hole rigorously using the methods
Ref. [10]. We then compare our results to experiments on
the high-Tc cuprate Bi-2201 in the hole underdoped regime
[25], and demonstrate that inclusion of the core hole improves
on existing calculations by shifting peak positions at higher
momenta.

II. METHOD

We will frame our discussion in terms of the YRZ
propagator, but note that the method is generally applicable
to single particle propagators of the form,

G−1(ω,k) = ω − Ek − |fk|2
ω + �k

, (1)

where Ek,fk, and �k are all functions of the single particle
momentum k. Note that this differs from the familiar pairing
gap propagator in BCS theory because Ek �= �k, and instead
allows for asymmetry between the bands above and below the
gap. Such propagators admit poles (corresponding to coherent
quasiparticle excitations) when ω − Ek − |fk|2/(ω + �k) = 0
and zeros when ω + �k = 0.

A. The YRZ propagator

The YRZ ansatz takes the coherent part of the electron
Green’s function in a two-dimensional copper oxide plane,
independent of spin, as [12]

Ge(ω,k) = gt (x)

ω − ξ0(k) − ξ ′(k) − |�RVB(k)|2
ω+ξ0(k)

. (2)

Here, x is the doping, ξ0,ξ
′ are bands with “renor-

malized” parameters, and �RVB(k) = −�0(cos kx − cos ky)
is a “resonating valence bond” (RVB) gap function.
Throughout the paper we neglect the superconducting
gap, which is much smaller than all other parameters
we consider, and so for notional convenience we drop

TABLE I. YRZ parameters

t0 t
′
0 t

′′
0 JH χ �0 μp

0.144 eV −0.3t0 0.2t0 0.12 eV 0.338 0.3t0 −0.0571 eV

the RVB subscripts in the expressions below. For the
bands we take ξ0(k) = −2t(x)(cos kx + cos ky), ξ

′
(k) =

−4t
′
cos kx cos ky − 2t

′′
(cos 2kx + cos 2ky) − μp. The hop-

ping parameters depend on doping as t(x) = gt (x)t0 +
3
8gs(x)JH χ , t

′
(x) = gt (x)t

′
0, t

′′
(x) = gt (x)t

′′
0 , χ ∼ 〈a†

iσ ai+x̂,σ 〉.
gt ,gs are referred to as the “Gutzwiller functions” [12], and are
given here by gt = 2x

1+x
, gs = 4

(1+x)2 . μp is a chemical potential
term that is determined by the doping [26]. The inclusion
of gt (x) in the numerator reflects the overall weight of the
coherent part of the single particle propagator, relative to the
incoherent part.

The Green’s function, Eq. (2), can also be viewed as
the result of a slave boson, renormalized mean field theory,
treatment of the t-J model [23], with a particular resummation
of the hopping terms [22]. In this picture the electron is factored
into fermionic spinon and bosonic holon degrees of freedom,
and the assumed condensation of the latter yields the gt (x)
factor. The spinon Green’s function is then

Gs(ω,k) = 1

ω − ξ0(k) − ξ ′(k) − |�(k)|2
ω+ξ0(k)

. (3)

Because the YRZ model has many parameters, a free fit
to the RIXS data would have little edifying value. Instead
we follow Refs. [24,25] and use parameters independently
determined by ARPES [15]. This will also allow us to make
a direct comparison with preexisting calculations of the RIXS
response. For convenience the parameter values we use in
the calculations below, with x = 0.12 (corresponding to an
underdoped sample) are shown in Table I.

B. Action and auxiliary fermions

We begin by formulating an action for a fermionic field
with a Green’s function of the YRZ type, Eq. (3) [equivalently
one could work with the definition in Eq. (1)]:

S[ν]0 =
∫

dω
∑

k

νk(ω − ξ0(k) − ξ ′(k) − |�(k)|2
ω + ξ0(k)

)ν̄k.

(4)

We concentrate below on the low temperature limit, T → 0.
Written explicitly in a temporal representation,

S[ν]0 = 1

2π

∫
dt

∑
k

νk(t)(i∂t − ξ0(k) − ξ ′(k))ν̄k(t)

− 1

4π2

∫
dt1dt2

∑
k

νk(t1)ν̄k(t2)h(t2 − t1). (5)

The action (5) is nonlocal in time, with a response kernel:

h(t) =
∫ ∞

−∞
dω

|�(k)|2
ω + ξ0(k)

eiωt . (6)

155101-2



AUXILIARY FERMION APPROACH TO THE RESONANT . . . PHYSICAL REVIEW B 96, 155101 (2017)

In the RIXS procedure, when the x-ray knocks a core
electron out and creates a core hole, it generates a temporary
local potential (whose duration is decided by the core hole
lifetime), this quenchlike process is often modeled [27] as
turning on a point interaction potential from time t = 0 to
time t = τ0. We note that while the core hole potential only
acts directly on charged particles, in the slave boson version
of YRZ the implicit hard core constraint suggests that there
will be an effective attractive potential for spinons (since the
charged holons are repulsed by the core hole).

The action including a core hole is Scorehole = S[ν] +∫ τ0

0 dtUcνr ν̄r . At this stage, the nonlocal nature of the action
in Eq. (4) makes it awkward to analyze. To deal with this
problem, we add an auxiliary fermion ψk , that reproduces
the spinon action (4) for νk while retaining a quadratic and
time-local form:

S[ν,ψ]0 = 1

2π

∫
dt

∑
k

[νk(t)(i∂t − ξ0(k) − ξ ′(k))ν̄k(t)

+ψk(t)(i∂t + ξ0(k))ψ̄k(t)

+�(k)νk(t)ψ̄−k(t) + �̄(k)ψ−k(t)ν̄k(t)]. (7)

Integrating out the ψ field would yield the action in Eq. (4).
Notice that ξ0(−k) = ξ0(k), and that the hopping parameters
of the auxiliary fermion ψk are shifted by ξ ′(k) compared to
νk. In Ref. [28] a related hidden fermion representation was
recently used for dynamical mean field calculations.

The advantage of this formulation is that we are now in
position to easily use the methods of Ref. [10], since the
new action is well described by a tight-binding Hamiltonian.
Including a spin index, our Hamiltonian is

Hcd = −
∑

ij,σ=↑,↓
t cij c

†
iσ cjσ −

∑
ij,σ=↑,↓

tdij d
†
iσ djσ

+
∑

ij,σ=↑,↓
�ijc

†
iσ djσ + H.c., (8)

where the ciσ and diσ annihilation operators correspond to the
original fermions (spinons in the YRZ ansatz) and the auxiliary
fermions, respectively. The hopping and pairing parameters
are t ci,i±x̂ = t ci,i±ŷ = t , t ci,i±x̂±ŷ = t

′
, t ci,i±2x̂ = t ci,i±2ŷ = t

′′
, t ci,i =

−μp, tdi,i±x̂ = tdi,i±ŷ = −t , �i,i+x̂ = −�i,i+ŷ = �. t cij contains
a nearest neighbor hopping, next nearest neighbor hopping,
and a chemical potential term, and tdij only contains a nearest
neighbor hopping term, which differs from that in t cij by a sign.

C. Dynamical core hole

We now consider the RIXS response for the system de-
scribed by the Hamiltonian Eq. (8). The Kramers-Heisenberg
formula (see, e.g., Ref. [6]) for the intensity with photon
energy and momentum transfer ω → ω − �ω and k → k +
Q, respectively, is given by

I ( Q,�ω) ∝
∑
f

|Af |2δ(Ef − Ei − �ω),

Af =
∑
m

eiQ·Rmχρσ

∑
n

〈f |cmρ |n〉〈n|c†mσ |i〉
En − Ei − ω + i�

, (9)

where |i〉 is the initial (ground) state of the system, |f 〉 are
the possible final states, and |n〉 are intermediate states in the
presence of the core hole. Rm is the lattice vector for site m

and the factor χρσ depends on the specific experimental setup,
which separates the signal into spin-flip (SF) and non-spin-
flip (NSF) channels. � is the inverse of core hole lifetime:
It represents decay channels that are only taken into account
phenomenologically, such as decay through phonon emission.
In this paper we take the value � ∼ 0.2 eV.

Following Ref. [10], the intensity can be expressed as an
integral:

I ( Q,�ω) ∝
∫ ∞

−∞
ds

∫ ∞

0
dt

∫ ∞

0
dτeiω(t−τ )−is�ω−�(t+τ )

×
∑
m,n

χρσχμνe
iQ·(Rm−Rn)Smn

ρσμν, (10)

where Smn
ρσμν involves evolution of the system before, during,

and after the absorption of the x-ray and the excitation of the
core hole (for details see Ref. [10]).

Smn
ρσμν ∼ g2

t (x)〈eiHτ cnρe
−iHnτ c†nσ eiHscmμeiHmt c†mνe

−iH (t+s)〉.
(11)

Here Hm(n) is the intermediate Hamiltonian in the presence
of a core hole at site m(n). Usually it is assumed that the
core hole provides an attractive point potential: Hm = Hcd +∑

σ Ucc
†
mσ cmσ (with Uc < 0). In this work, there is also the

possibility that the core hole leads to a potential for the auxil-
iary fermions, Hm = Hcd + ∑

σ Ucc
†
mσ cmσ + ∑

σ Udd
†
mσdmσ .

However, in the absence of a strong physical motivation we
neglect such an effect.

We can now evaluate Eq. (11) numerically, by relating
Smn

ρσμν to determinants and inverses of single particle evolution
operators, as detailed in Ref. [10]. The dimension of these
matrices depends linearly on the number of sites in the system,
which makes the computation accessible numerically. Note
that the procedure can also be carried out when supercon-
ducting pairing terms are included directly in (8) as shown in
Ref. [11].

To end this section we calculate the expected RIXS intensity
with Uc = 0 (no core hole potential). We first solve the
Hamiltonian in Eq. (8), using a linear transformation to new
fermionic quasiparticles annihilated by αkσ and βkσ :

ckσ = cos θkαkσ + sin θkβkσ ,

dkσ = − sin θkαkσ + cos θkβkσ , (12)

where tan 2θk = 2�(k)
2ξ0(k)+ξ

′ (k)
. The effective Hamiltonian is then

just

Hαβ =
∑
kσ

ε+(k)α†
kσαkσ + ε−(k)β†

kσ βkσ , (13)

and the energy eigenvalues are

ε±(k) = ξ ′(k)

2
±

√(
2ξ0(k) + ξ ′(k)

2

)2

+ |�(k)|2. (14)

With these definitions, the scattering amplitude Af in Eq. (9)
can be written in terms of αkσ and βkσ , which are the true
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excitations of the model:

Af =
∑

k

χρσ 〈f |(cos θk+Qαk+Qρ + sin θk+Qβk+Qρ)

×
∑

n

|n〉〈n|
En − Ei − ω + i�

× (cos θkα
†
kσ + sin θkβ

†
kσ )|i〉. (15)

To evaluate this expression we take advantage of the fact that
for Uc = 0 we can choose the intermediate states, |n〉 to be
eigenstates of Eq. (13). Furthermore, specializing to the case
of the YRZ model in the underdoped regime, only the lower
ε−(k) band of the initial state |i〉 is occupied at T = 0, so we
only need to retain terms that include a β annihilation operator,
as these represent transitions that originate in the ε− band. We
also neglect a contribution proportional to δQ,0. The result is

Af =
∑

k

χρσ

{ 〈f | sin θk+Q cos θkβk+Qρα
†
kσ |i〉

ω − i� − ε+(k)

+ 〈f | sin θk+Q sin θkβk+Qρβ
†
kσ |i〉

ω − i� − ε−(k)

}
. (16)

The total RIXS intensity is then the summation of |Af |2 over
all possible final states |f 〉, including conservation of energy:

I (Q,�ω) ∝
∑

k

|χσρ |2
{
δ(ε+(k) − ε−(k + Q) − �ω)

× �(ε+(k))�(−ε−(k + Q)) sin2 θk+Q cos2 θk

(ω − ε+(k))2 + �2

+ δ(ε−(k) − ε−(k + Q) − �ω)

× �(ε−(k))�(−ε−(k + Q)) sin2 θk+Q sin2 θk(
ω − ε−(k)

)2 + �2

}
.

(17)

The extension to the more general case including transitions
starting in the ε+ band is simple. In practice the delta functions
are replaced by Gaussians to reflect an experimental resolution
of 150 meV.

In the limit that � � ω,ε± Eq. (17) gives essentially the
same result as the calculation of the YRZ spin dynamical
structure factor in Refs. [22,24], except for an effective
“random phase approximation” (RPA) resummation of the
susceptibility that occurs in those works (see also Ref. [23]).

III. COMPARISON WITH RIXS DATA

We evaluate Eq. (10) numerically, using the determinant
method described in Ref. [10]. Figure 1 shows a comparison
between this calculation and experimental data for hole doped
Bi-2201 (at underdoping x = 0.12) reported in Ref. [25].
Quantitative agreement with the experiments was reported
using the itinerant quasiparticle approach in Ref. [10] and
with a calculation of the YRZ dynamical spin susceptibility
in Ref. [25]. Next, we show how the combined approach
improves on the YRZ-based result. We emphasize, though,
that our calculation relies on the YRZ parameters used in
Ref. [25] (and originally taken from fits to ARPES data [15]),

FIG. 1. RIXS intensity along the (ζ,0) momentum transfer direc-
tion. The theoretical calculation (green curves) with Uc = −3 eV,
is compared to experimental data from Ref. [25] for underdoped
Bi-2201 in the pseudogap region (the blue curves are antisymmetrized
Lorentzian fits and the red lines are elastic peaks).

and are essentially those pertaining to Bi-2212 bilayers, while
the experiments have been carried out on Bi-2201. Better
determined tight-binding parameters would be essential for
a real test of the YRZ approach, but are outside the scope of
this paper.

To argue the necessity of taking into account the core hole
dynamics, we show in Fig. 2 the effect of adding a core hole, by
comparing the intensities calculated using Eqs. (10) and (11)
versus Eq. (17). As we remarked on in the previous section, the
latter gives a result similar to previous YRZ spin susceptibility
calculations, except for an effective RPA resummation [22].
However, for cuprate parameters the effect of this RPA is
confined to low energies [24] <100 meV and therefore it is
not a significant factor in our comparison. We find that the core
hole pushes the peaks to higher energy transfer and that this
effect is more significant at large momentum transfer. While
the calculation with Uc = 0 catches the essential response, the
inclusion of a core hole significantly improves the agreement
with the experiment at high energies.

155101-4
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FIG. 2. The dispersion of the paramagnon mode in underdoped
Bi-2201, along (ζ,0). The red line shows the calculation with no
core hole potential, (giving a similar result to Ref. [25]). The blue
line shows the peak position for the spin-flip contribution with a core
hole potential Uc = −3 eV. Experimental data reported in Ref. [25]
are noted by black squares.

The shift of the response to higher energies can be
understood by expanding Eq. (9) to first order in the core
hole potential Vr = Uc

∑
σ c

†
rσ crσ . This yields a term,

A1
f ∝ Uc

∑
m

χρσ eiQ·Rm

×〈f |cmρG0(c†m↑cm↑ + c
†
m↓cm↓)G0c

†
mσ |i〉, (18)

where G−1
0 = ω − i� − (Hcd − Ei). This means the final state

would have two pairs of quasi-particle-hole excitations, with
total momentum Q and total energy �ω, while in the no core
hole case, the excitations are a single quasi-particle-hole pair,
with the same total energy and momentum, and the excitations
are mostly close to the Fermi surface. The core hole allows the
individual excitations to explore a larger phase space, further
from the Fermi surface, and thus the excitation energies are
higher, and the peak moves to the right. This effect is much
harder to analyze quantitatively, but the determinant method
allows us to calculate it numerically.

It is important to understand the relation between the
present treatment and other RIXS calculations, based on
magnetic susceptibility, such as carried out in, e.g., Ref. [22].
We point out that in the case where Uc = 0, i.e., no core hole,
our approach yields a result that is similar to the dynamical
susceptibility: In Eq. (9), if we assume � is much larger than
the other energy scales of the system, we can replace the
term (En − Ei − ω + i�)−1 by F (ω,�) for any |n〉, and the
intensity is written as the Fourier transform of the four-point
function:

I (Rnm,t) = F (ω,�)χσλχμν〈ρnσλ(t)ρmμν(0)〉, (19)

where ρnτσ = c
†
nτ cnσ , and we have used that δ(E) =∫ ∞

−∞
dt
2π

e−iEt . In Ref. [22] the irreducible part of the magnetic
susceptibility is defined as

χ irr(Rnm,t) = i〈T (ρn↑↑(t)−ρn↓↓(t))(ρm↑↑(0)−ρm↓↓(0))〉,
(20)

FIG. 3. RIXS intensity along the (1,1) and (1,0) directions,
calculated using the parameters in Table I and Uc = 0 (effectively
indistinguishable from the Uc = −3 eV case when presented as a
color density plot). Although there is a clear peak along the antinodal
(1,0) direction, it is difficult to interpret the intensity along the (1,1)
direction in terms of damped spin wave excitations (finite lifetime
magnons).

where T indicates time ordering. Equations (19) and (20) are
both density-density correlation functions of the system, and
have similar behavior.

In Fig. 3, we show the calculated intensity along high sym-
metry lines for Uc = 0 (a color density plot of the Uc = −3 eV
case would be indistinguishable). Similar to the conclusions
in Refs. [5], [25], we see that along the nodal (1,1) direction
the RIXS spectrum becomes much more diffuse and less
sensitive to momentum transfer, this feature occurs naturally
in calculations based on itinerant fermionic quasiparticles (see
the aforementioned references and Ref. [22]) but is more
difficult to understand in the framework of local moments and
finite lifetime broadened magnon excitations (damped spin
waves). While the RIXS signal is commonly interpreted as
a primarily magnetic response [29–31], here we see that our
tight-binding Hamiltonian approach can quantitatively explore
the RIXS spectrum for various momentum transfers, and go
beyond simple spin wave theories.

IV. CONCLUSIONS

We have shown how to calculate the RIXS response,
including a dynamical treatment of the transient core hole, of
systems with nontrivial single particle Green’s functions that
feature both zeros and poles. We do so by introducing auxiliary
fermions, yielding a tight-binding formulation that can be
treated by the method of Ref. [10]. Our approach is appropriate
to systems and models where many-body interaction effects
can primarily be described through renormalization of the
single particle propagator (i.e., through dressed quasiparti-
cles), and does not incorporate higher order (quasi)particle
hole “bubble” diagrams.

As a test of our approach we applied it to the YRZ ansatz,
a semiphenomenological Green’s function popular in studies
of high-Tc cuprates. Comparing our results to experiments
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on Bi-2201, we showed that inclusion of the core hole
potential moves dispersion peaks to higher energy along the
(1,0) momentum transfer direction, giving better agreement
with the experimental data than previous calculations based
on YRZ physics. Examining the effect of the core hole
potential perturbatively, we see that this shift to higher energy
is due to an enhancement of the scattering phase space,
suggesting that it might be a general feature in calculated RIXS
spectra.

Finally, we note that this method can also be used to describe
systems in which the auxiliary fermions have a definite phys-
ical manifestation, for example, coupled systems where the

RIXS probe only interacts with one species (band) of fermions.
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